ARTÍCULO
TITULO

Viscosity and Waterproofing Performance Evaluation of Synthetic Polymerized Rubber Gel (SPRG) after Screw Mixing

Dong Soo Ahn    
Kyu Hwan Oh    
Jin Sang Park and Sang Keun Oh    

Resumen

As opposed to asphalt emulsion waterproofing membrane, Synthetic Rubber Polymer Gel (SPRG) waterproofing materials are not heated prior to installation in concrete structures. SPRG materials are typically required to undergo a screw-mixing process to temporarily reduce the high viscosity and facilitate membrane installation on a concrete surface. However, there is no standard regulation on the duration of screw-mixing time during SPRG construction. Reported construction cases indicate that SPRG are left under constant screw mixing and are reused after hours or days of rest without being replaced with fresh products. When installed in this condition, SPRGs are subject to waterproofing performance degradation. In this study, SPRG viscosity properties are measured after five different screw-mixing procedures (no screw mixing, 10, 20, 30 and 60 min) and are set to rest in storage (2 h, 1, 2, 3, and 7 days). Specimens prepared under the respective screw mixing and storage times are evaluated for their changes in waterproofing properties through a series of ISO TS 16774 standard evaluation methods. A correlative comparison of the property evaluation results is presented to provide the changes to SPRG property and waterproofing performance. These results are then used to propose a general guideline for selecting optimal screw-mixing time with respect to maintaining adequate waterproofing performance and the viscosity recovery property of SPRG.