ARTÍCULO
TITULO

Aerodynamic Force and Comprehensive Mechanical Performance of a Large Wind Turbine during a Typhoon Based on WRF/CFD Nesting

Shitang Ke    
Wenlin Yu    
Jiufa Cao and Tongguang Wang    

Resumen

Compared with normal wind, typhoons may change the flow field surrounding wind turbines, thus influencing their wind-induced responses and stability. The existing typhoon theoretical model in the civil engineering field is too simplified. To address this problem, the WRF (Weather Research Forecasting) model was introduced for high-resolution simulation of the Typhoon “Nuri” firstly. Secondly, the typhoon field was analyzed, and the wind speed profile of the boundary layer was fitted. Meanwhile, the normal wind speed profile with the same wind speed of the typhoon speed profile at the gradient height of class B landform in the code was set. These two wind speed profiles were integrated into the UDF (User Defined Function). On this basis, a five-MW wind turbine in Shenzhen was chosen as the research object. The action mechanism of speed was streamlined and turbulence energy surrounding the wind turbine was disclosed by microscale CFD (Computational Fluid Dynamics) simulation. The influencing laws of a typhoon and normal wind on wind pressure distribution were compared. Finally, key attention was paid to analyzing the structural response, buckling stability, and ultimate bearing capacity of the wind turbine system. The research results demonstrated that typhoons increased the aerodynamic force and structural responses, and decreased the overall buckling stability and ultimate bearing capacity of the wind turbine.

 Artículos similares

       
 
Siliang Du, Yi Zha and Qijun Zhao    
The concept of the Fan Wing, a novel aircraft vector-force-integrated device that combines a power unit with a fixed wing to generate distributed lift and thrust by creating a low-pressure vortex on the wing?s surface, was studied. To investigate the uni... ver más
Revista: Aerospace

 
Shiyan Lin, Ruiyu Li, Limin Gao and Ning Ge    
The accurate prediction of tip leakage flow is the premise for flow mechanism analysis and compressor performance optimization. The detached eddy simulation (DES) method, which compromises cost and accuracy, has excellent potential for a high Reynolds fl... ver más
Revista: Aerospace

 
Yoichi Suenaga and Kojiro Suzuki    
This study examines the wing hinge oscillations in an aircraft concept that employs multiple wings, or small aircraft, chained at the wing tips through freely rotatable hinges with minimal structural damping and no mechanical position-locking system. Thi... ver más
Revista: Aerospace

 
Kirill Chernov, Uliana Monakhova, Yaroslav Mashtakov, Shamil Biktimirov, Dmitry Pritykin and Danil Ivanov    
The paper presents a study of decentralized control for a satellite formation flying mission that uses differential lift and drag to enforce the relative positioning requirements. All spacecraft are equipped with large sunlight reflectors so that, given ... ver más
Revista: Aerospace

 
Baowang Li, Xiaobing Wang, Junqiang Wu, Yang Tao and Neng Xiong    
To study the aerodynamic characteristics of the convex structure of a surface-monitoring device on a high-speed train and to evaluate its impact on the aerodynamic performance of the high-speed train, numerical simulation research was conducted on three ... ver más
Revista: Applied Sciences