Inicio  /  Water  /  Vol: 9 Núm: 5 Par: 0 (2017)  /  Artículo
ARTÍCULO
TITULO

Soil Moisture Stochastic Model in Pinus tabuliformis Forestland on the Loess Plateau, China

Yi-Fang Chang    
Hua-Xing Bi    
Qing-Fu Ren    
Hua-Sen Xu    
Zhi-Cai Cai    
Dan Wang    
Wen-Chao Liao    

Resumen

As an important restrictive factor of ecological construction on the Loess Plateau, the study of soil moisture dynamics is essential, especially under the impact of climate change on hydrological processes. In this study, the applicability of the Laio soil moisture stochastic model on a typical plantation Pinus tabuliformis forestland on the Loess Plateau was studied. On the basis of data concerning soil properties, climate, and plants of the typical forestland during the period 2005?2015 in the Chinese National Ecosystem Research Network (Ji County Station) in Ji County, Shanxi, model results were acquired and compared with observed soil moisture from 2005 to 2015 in the study area. The genetic algorithm method was used to optimize model parameters in the calibration process. In the calibration and validation periods, the relative error between numerical characteristics of simulated and observed soil moisture values was mostly within 10%, and model evaluation index J was close to 1, indicating that the Laio model had good applicability in the study area. When calibrating the model, it was recommended to use soil moisture data with a sampling interval of no more than 10 days so as to reduce the loss of soil moisture fluctuation information. In the study area, the Laio model was strongly sensitive to variations of input parameters, including maximum evapotranspiration rate Emax, average rainfall depth a, and average rainfall frequency ?, which should be paid more attention for stable and reliable simulation results. This study offers a method to obtain soil moisture data at ungauged sites. Results from this study provide guidance for Laio model application on the Loess Plateau.

 Artículos similares

       
 
Dandan Liu, Yaowen Chang, Lei Sun, Yunpeng Wang, Jiayu Guo, Luyue Xu, Xia Liu and Zhaofei Fan    
Uncovering the complex periodic variations in soil moisture can provide a significant reference for climate prediction and hydrological process simulation. We used wavelet analysis to quantify and identify the multi-scale periodic variations of soil mois... ver más
Revista: Water

 
Xiaotian Luo, Cong Yin, Yueqiang Sun, Weihua Bai, Wei Li and Hongqing Song    
Deep soil moisture data have wide applications in fields such as engineering construction and agricultural production. Therefore, achieving the real-time monitoring of deep soil moisture is of significant importance. Current soil monitoring methods face ... ver más
Revista: Water

 
Anthony A. Amori, Olufemi P. Abimbola, Trenton E. Franz, Daran Rudnick, Javed Iqbal and Haishun Yang    
Model calibration is essential for acceptable model performance and applications. The Hybrid-Maize model, developed at the University of Nebraska-Lincoln, is a process-based crop simulation model that simulates maize growth as a function of crop and fiel... ver más
Revista: Water

 
Bicheng Zhou, Anatoly V. Brouchkov and Jiabo Hu    
Frost heaving in soils is a primary cause of engineering failures in cold regions. Although extensive experimental and numerical research has focused on the deformation caused by frost heaving, there is a notable lack of numerical investigations into the... ver más
Revista: Water

 
Ze Liu, Jingzhao Zhou, Xiaoyang Yang, Zechuan Zhao and Yang Lv    
Water resource modeling is an important means of studying the distribution, change, utilization, and management of water resources. By establishing various models, water resources can be quantitatively described and predicted, providing a scientific basi... ver más
Revista: Water