Inicio  /  Energies  /  Vol: 6 Núm: 9Pages4 Par: Septemb (2013)  /  Artículo
ARTÍCULO
TITULO

Coordinated Control of a Doubly-Fed Induction Generator-Based Wind Farm and a Static Synchronous Compensator for Low Voltage Ride-through Grid Code Compliance during Asymmetrical Grid Faults

Zhong Zheng    
Geng Yang and Hua Geng    

Resumen

This paper aims to explore a viable solution for a doubly-fed induction generator (DFIG)-based wind farm to meet the reactive support requirement of the low voltage ride-through (LVRT) grid code with safe grid-connected operation during asymmetrical grid faults. First, the control scheme for the DFIG-based wind energy conversion system (WECS) is designed. Then, the controllability issue is analyzed by means of an optimal method, and the derived controllable regions indicate that the DFIG-based WECS can only remain controllable under mild asymmetrical fault situations. Afterwards, the static synchronous compensator (STATCOM) is introduced as extra equipment to ensure that the DFIG-based wind farm remains controllable under severe asymmetrical fault situations. For this purpose, a voltage compensation control scheme and a corresponding capacity matching method for the STATCOM are proposed. The simulation results verify that, with the proposed coordinated control between the DFIG-based wind farm and the STATCOM, the required positive-sequence reactive current can be supplied to support the power grid. The oscillations on the electromagnetic torque and direct current (DC)-link voltage of the DFIG-based WECS can also be eliminated. Therefore, the control scheme can be helpful to improve the reliability of both the wind farm and the power system during grid faults.

 Artículos similares

       
 
Xinyin Zhang, Zaijun Wu, Minqiang Hu, Xianyun Li and Ganyun Lv    
The Voltage Source Converter-HVDC (VSC-HVDC) system applied to wind power generation can solve large scale wind farm grid-connection and long distance transmission problems. However, the low voltage ride through (LVRT) of the VSC-HVDC connected wind farm... ver más
Revista: Energies

 
Jun Yang, Zhili Zeng, Yufei Tang, Jun Yan, Haibo He and Yunliang Wu    
In power systems, although the inertia energy in power sources can partly cover power unbalances caused by load disturbance or renewable energy fluctuation, it is still hard to maintain the frequency deviation within acceptable ranges. However, with the ... ver más
Revista: Energies

 
Haitao Liu, Yu Ji, Huaidong Zhuang and Hongbin Wu    
Based on the characteristics of electric vehicles (EVs), this paper establishes the load models of EVs under the autonomous charging mode and the coordinated charging and discharging mode. Integrating the EVs into a microgrid system which includes wind t... ver más
Revista: Energies

 
Zaijun Wu, Xiaobo Dou, Jiawei Chu and Minqiang Hu    
In this paper, based on the similarity, in structure and principle, between a grid-connected converter for a direct-driven permanent magnet synchronous generator (D-PMSG) and an active power filter (APF), a new D-PMSG-based wind turbine (WT) system con... ver más
Revista: Energies

 
Jun Yao, Qing Li, Zhe Chen and Aolin Liu    
This paper presents a coordinated control method for a doubly-fed induction generator (DFIG)-based wind-power generation system with a series grid-side converter (SGSC) under distorted grid voltage conditions. The detailed mathematical models of the DFIG... ver más
Revista: Energies