Inicio  /  Energies  /  Vol: 12 Núm: 4 Par: Februar (2019)  /  Artículo
ARTÍCULO
TITULO

Development of an Exergy-Rational Method and Optimum Control Algorithm for the Best Utilization of the Flue Gas Heat in Coal-Fired Power Plant Stacks

Resumen

Waste heat that is available in the flue gas of power plant stacks is a potential source of useful thermal power. In reclaiming and utilizing this waste heat without compromising plant efficiency, stacks usually need to be equipped with forced-draught fans in order to compensate for the decrease in natural draught while stack gas is cooled. In addition, pumps are used to circulate the heat transfer fluid. All of these parasitic operations require electrical power. Electrical power has unit exergy of almost 1 W/W. On the contrary, the thermal power exergy that is claimed from the low-enthalpy flue gas has much lower unit exergy. Therefore, from an exergetic point of view, the additional electrical exergy that is required to drive pumps and fans must not exceed the thermal exergy claimed. Based on the First-Law of Thermodynamics, the net energy that is saved may be positive with an apparently high coefficient of performance; however, the same generally does not hold true for the Second-Law. This is a matter of determining the optimum amount of heat to be claimed and the most rational method of utilizing this heat for maximum net exergy gain from the process, under variable outdoor conditions and the plant operations. The four main methods were compared. These are (a) electricity generation by thermoelectric generators, electricity generation with an Organic-Rankine Cycle with (b) or without (c) a heat pump, and (d) the direct use of the thermal exergy that is gained in a district energy system. The comparison of these methods shows that exergy-rationality is the best for method (b). A new analytical optimization algorithm and the exergy-based optimum control strategy were developed, which determine the optimum pump flow rate of the heat recovery system and then calculate how much forced-draft fan power is required in the stack at dynamic operating conditions. Robust design metrics were established to maximize the net exergy gain, including an exergy-based coefficient of performance. Parametric studies indicate that the exergetic approach provides a better insight by showing that the amount of heat that can be optimally recovered is much different than the values given by classical economic and energy efficiency considerations. A case study was performed for method (d), which shows that, without any exergy rationality-based control algorithm and design method, the flue gas heat recovery may not be feasible in district energy systems or any other methods of utilization of the heat recovered. The study has implications in the field, since most of the waste heat recovery units in industrial applications, which are designed based on the First-Law of Thermodynamics, result in exergy loss instead of exergy gain, and are therefore responsible for more carbon dioxide emissions. These applications must be retrofitted with new exergy-based controllers for variable speed pumps and fans with optimally selected capacities.

 Artículos similares

       
 
Mohammad Reza Majdi Yazdi, Mehdi Aliehyaei and Marc A. Rosen    
Gas turbines incur a loss of output power during hot seasons due to high ambient air temperatures, and input air cooling systems are often used to partly offset this problem. Here, results are reported for an investigation of the utilization of a heat pu... ver más
Revista: Sustainability

 
Marco F. Torchio    
In the first part of this work, combined heat and power (CHP) criteria pertaining to energy, exergy, environmental (pollutant emission) and economic aspects, have been investigated and compared. Although the constraints in legislation usually refer to en... ver más
Revista: Energies

 
Francesco Buffa, Simon Kemble, Giampaolo Manfrida and Adriano Milazzo    
Compressed Air Energy Storage is recognized as a promising technology for applying energy storage to grids which are more and more challenged by the increasing contribution of renewable such as solar or wind energy. The paper proposes a medium-size groun... ver más
Revista: Energies

 
Forrest Meggers, Luca Baldini and Hansjürg Leibundgut    
Ground heat is a renewable resource that is readily available for buildings in cool climates, but its relatively low temperature requires the use of a heat pump to extract it for heating. We developed a system that uses low temperature ground heat direct... ver más
Revista: Energies

 
Michel Feidt and Monica Costea    
The paper presents a comparison of various CHP system configurations, such as Vapour Turbine, Gas Turbine, Internal Combustion Engine, External Combustion Engine (Stirling, Ericsson), when different thermodynamic criteria are considered, namely the first... ver más
Revista: Energies