Inicio  /  Applied Sciences  /  Vol: 7 Núm: 7 Par: July (2017)  /  Artículo
ARTÍCULO
TITULO

Optimized Neural Architecture for Automatic Landslide Detection from High-Resolution Airborne Laser Scanning Data

Mustafa Ridha Mezaal    
Biswajeet Pradhan    
Maher Ibrahim Sameen    
Helmi Zulhaidi Mohd Shafri and Zainuddin Md Yusoff    

Resumen

An accurate inventory map is a prerequisite for the analysis of landslide susceptibility, hazard, and risk. Field survey, optical remote sensing, and synthetic aperture radar techniques are traditional techniques for landslide detection in tropical regions. However, such techniques are time consuming and costly. In addition, the dense vegetation of tropical forests complicates the generation of an accurate landslide inventory map for these regions. Given its ability to penetrate vegetation cover, high-resolution airborne light detection and ranging (LiDAR) has been used to generate accurate landslide maps. This study proposes the use of recurrent neural networks (RNN) and multi-layer perceptron neural networks (MLP-NN) in landscape detection. These efficient neural architectures require little or no prior knowledge compared with traditional classification methods. The proposed methods were tested in the Cameron Highlands, Malaysia. Segmentation parameters and feature selection were respectively optimized using a supervised approach and correlation-based feature selection. The hyper-parameters of network architecture were defined based on a systematic grid search. The accuracies of the RNN and MLP-NN models in the analysis area were 83.33% and 78.38%, respectively. The accuracies of the RNN and MLP-NN models in the test area were 81.11%, and 74.56%, respectively. These results indicated that the proposed models with optimized hyper-parameters produced the most accurate classification results. LiDAR-derived data, orthophotos, and textural features significantly affected the classification results. Therefore, the results indicated that the proposed methods have the potential to produce accurate and appropriate landslide inventory in tropical regions such as Malaysia.

 Artículos similares

       
 
Xue Li, Jian Sha, Zhong-Liang Wang     Pág. 1 - 13
One of the most important water quality problems affecting lakes and reservoirs is eutrophication, which is caused by multiple physical and chemical factors. As a representative index of eutrophication, the concentration of chlorophyll-a has always been ... ver más
Revista: Water

 
Tian Peng, Jianzhong Zhou, Chu Zhang, Wenlong Fu     Pág. 1 - 20
Accurate and reliable streamflow forecasting plays an important role in various aspects of water resources management such as reservoir scheduling and water supply. This paper shows the development of a novel hybrid model for streamflow forecasting and d... ver más
Revista: Water

 
Mingjun Ren, Runxing Liu, Haibo Hong, Jieji Ren and Gaobo Xiao    
Although four-dimensional (4D) light field imaging has many advantages over traditional two-dimensional (2D) imaging, its high computation cost often hinders the application of this technique in many fields, such as object detection and tracking. This pa... ver más
Revista: Applied Sciences

 
Georgios K. Bekas, Georgios E. Stavroulakis     Pág. 1 - 12
The present study investigates the potential of the implementation of machine learning techniques in optimized multi storey reinforced concrete frames. The variables that are taken into account in the objective function of the optimization problem are th... ver más
Revista: Infrastructures

 
Ting Wang, Guohua Fang, Xinmin Xie, Yu Liu, Zhenzhen Ma     Pág. 1 - 19
In this paper, a multi-dimensional equilibrium allocation model of water resources was developed based on the groundwater multiple loop iteration technique. The proposed model is an integrated framework of three modules respectively corresponding to the ... ver más
Revista: Water