Inicio  /  Water  /  Vol: 8 Núm: 11 Par: 0 (2016)  /  Artículo
ARTÍCULO
TITULO

Global Sea Surface Temperature and Sea Level Rise Estimation with Optimal Historical Time Lag Data

Mustafa M. Aral    
Jiabao Guan    

Resumen

Prediction of global temperatures and sea level rise (SLR) is important for sustainable development planning of coastal regions of the world and the health and safety of communities living in these regions. In this study, climate change effects on sea level rise is investigated using a dynamic system model (DSM) with time lag on historical input data. A time-invariant (TI-DSM) and time-variant dynamic system model (TV-DSM) with time lag is developed to predict global temperatures and SLR in the 21st century. The proposed model is an extension of the DSM developed by the authors. The proposed model includes the effect of temperature and sea level states of several previous years on the current temperature and sea level over stationary and also moving scale time periods. The optimal time lag period used in the model is determined by minimizing a synthetic performance index comprised of the root mean square error and coefficient of determination which is a measure for the reliability of the predictions. Historical records of global temperature and sea level from 1880 to 2001 are used to calibrate the model. The optimal time lag is determined to be eight years, based on the performance measures. The calibrated model was then used to predict the global temperature and sea levels in the 21st century using a fixed time lag period and moving scale time lag periods. To evaluate the adverse effect of greenhouse gas emissions on SLR, the proposed model was also uncoupled to project the SLR based on global temperatures that are obtained from the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. The projected SLR estimates for the 21st century are presented comparatively with the predictions made in previous studies.

 Artículos similares

       
 
Viviana M. Gamboa Sojo, Caterina Morigi, Leonardo Langone and Renata G. Lucchi    
The objective of this study was to reconstruct the last century?s climatic oscillations in the Arctic region around the Fram Strait using high-resolution analysis of foraminiferal assemblages as proxies for surface and deep-water mass properties. In this... ver más

 
Shuling Zhao and Sishuo Zhao    
Due to the intensification of economic globalization and the impact of global warming, the development of methods to reduce shipping costs and reduce carbon emissions has become crucial. In this study, a multi-objective optimization algorithm was designe... ver más

 
Jifeng Zhu, Xiaohe Pan, Zheng Peng, Mengzhuo Liu, Jingqian Guo and Jun-Hong Cui    
The establishment of the Underwater Internet of Things (UIoT) and the realization of interconnection between heterogeneous underwater intelligent devices are urgent global challenges. Underwater acoustic networking is the most suitable technology to achi... ver más

 
Geng Liu, Zhongshan Shen, Xibin Han, Haifeng Wang, Weiwei Chen, Yi Zhang, Pengyun Ma, Yibing Li, Yun Cai, Pengfei Xue, Huafeng Qin and Chunxia Zhang    
The stability of contemporary ice shelves is under threat due to global warming, and the geological records in the Ross Sea offer such an opportunity to test the linkage between them. However, the absence of calcareous microfossils in the sediments of th... ver más

 
Tingting Fan, Yuchen Wang, Zhiguo Xu, Lining Sun, Peitao Wang and Jingming Hou    
Tsunami monitoring and early warning systems are mainly established to deal with seismogenic tsunamis generated by sudden seafloor fault displacement. However, a global tsunami triggered by the 2022 Tonga volcanic eruption promoted the need for tsunami e... ver más