ARTÍCULO
TITULO

Multi-Fidelity Multi-Objective Efficient Global Optimization Applied to Airfoil Design Problems

Atthaphon Ariyarit and Masahiro Kanazaki    

Resumen

In this study, efficient global optimization (EGO) with a multi-fidelity hybrid surrogate model for multi-objective optimization is proposed to solve multi-objective real-world design problems. In the proposed approach, a design exploration is carried out assisted by surrogate models, which are constructed by adding a local deviation estimated by the kriging method and a global model approximated by a radial basis function. An expected hypervolume improvement is then computed on the basis of the model uncertainty to determine additional samples that could improve the model accuracy. In the investigation, the proposed approach is applied to two-objective and three-objective optimization test functions. Then, it is applied to aerodynamic airfoil design optimization with two objective functions, namely minimization of aerodynamic drag and maximization of airfoil thickness at the trailing edge. Finally, the proposed method is applied to aerodynamic airfoil design optimization with three objective functions, namely minimization of aerodynamic drag at cruising speed, maximization of airfoil thickness at the trialing edge and maximization of lift at low speed assuming a landing attitude. XFOILis used to investigate the low-fidelity aerodynamic force, and a Reynolds-averaged Navier?Stokes simulation is applied for high-fidelity aerodynamics in conjunction with a high-cost approach. For comparison, multi-objective optimization is carried out using a kriging model only with a high-fidelity solver (single fidelity). The design results indicate that the non-dominated solutions of the proposed method achieve greater data diversity than the optimal solutions of the kriging method. Moreover, the proposed method gives a smaller error than the kriging method.

 Artículos similares

       
 
Young Hwan Choi and Joong Hoon Kim    
This study compares the performance of self-adaptive optimization approaches in efficient water distribution systems (WDS) design and presents a guide for the selection of the appropriate method employing optimization utilizing the characteristic of each... ver más
Revista: Water

 
Sheng Zhang, Yuguang Bai, Youwei Zhang and Dan Zhao    
Hypersonic vehicles or engines usually employ complex thermal protecting shells. This sometimes brings multi-physics difficulties, e.g., thermal-aeroelastic problems like panel flutter etc. This paper aims to propose a novel optimization method versus th... ver más
Revista: Aerospace

 
Yanyun Yu, Hongshuo Zhang, Zongbao Mu, Yating Li, Yutong Sun and Jia Liu    
Trim optimization is an available approach for the energy saving and emission reduction of a ship. As a ship sails on the water, the draft and trim undergo constant changes due to the consumption of fuel oil and other consumables. As a result, the select... ver más

 
Xiyun Ge, Hongkun Zhou, Junbo Zhao, Xiaowei Li, Xinyu Liu, Jin Li and Chengming Luo    
With the extensive application of sensor technology in scientific ocean research, ocean resource exploration, underwater engineering construction, and other fields, underwater target positioning technology has become an important support for the ocean fi... ver más

 
Jafar Jafari-Asl, Seyed Arman Hashemi Monfared and Soroush Abolfathi    
This study investigates the optimal and safe operation of pumping stations in water distribution systems (WDSs) with the aim of reducing the environmental footprint of water conveyance processes. We introduced the nonlinear chaotic honey badger algorithm... ver más
Revista: Water