Inicio  /  Buildings  /  Vol: 9 Núm: 2 Par: Februar (2019)  /  Artículo
ARTÍCULO
TITULO

Numerical Simulation of the Semi-Rigid Behaviour of Integrally Attached Timber Folded Surface Structures

Resumen

Timber folded surface structures assembled using semi-rigid multiple tab and slot joints (MTSJ) have been shown to form feasible structural systems with high load bearing potential. However, for their further development and use on large building scales, a pertinent model for prediction of their structural behaviour has yet to be developed. This paper focuses on simplified numerical methods for accurately modelling the semi-rigid structural behaviour of bidirectional timber folded surface structures with multiple tab and slot connections. Within this scope, the structure behaviour is considered to be in the elastic stage. Three practical methods of analysis for such structural systems are presented. The first two approaches use the Finite Element Method (FEM), where the theory of plates and shells are applied. In the first method, the MTSJs are modeled using strip element models, while, in the second strategy, spring models are used. The third modeling strategy elaborates on the new macroscopic mechanical models, referred to as macro models. Sets of one-dimensional (1D) elements are used to represent the mechanical behaviour of the entire system. Both linear and geometric nonlinear analysis are performed for all three modeling strategies. The numerical results are then validated against the large scale experiments. Comparison of the strip and spring element model results have shown that the strips represent more accurately the experimentally obtained values. Concerning the macro modelling approach, very good agreement with both detailed FE modelling approaches, as well as experimental results, were obtained. The results indicate that both linear and nonlinear analysis can be used for modelling the displacements within the elastic range. However, it is essential to include geometric nonlinearities in the analysis for accurate modelling of occurring strains as well as for displacements when considering higher load levels. Finally, it is demonstrated that including semi-rigidity in the numerical models is of high importance for analysing the behaviour of timber folded surface structures with MTSJ.

 Artículos similares

       
 
Zhe Wang, Weisheng Xu, Qing Xu, Yangming Wang and Yingna Zhu    
To investigate the mechanism of reinforcing soft soil with cement-mixing pile, based on ABAQUS secondary development, a numerical simulation study of the hydration reaction of cement-mixing piles was conducted. In this study, the influence of ground temp... ver más
Revista: Buildings

 
Guojin Wang, Xin Zhuo, Shenbin Zhang and Jie Wu    
The frame-unit bamboo culm structure system offers a novel approach to bamboo structure, combining advantages like reduced construction times and simplified joint designs. Despite its benefits, there is limited research on its mechanical properties and c... ver más
Revista: Buildings

 
Yadong Zhu, Haifeng Jiao, Shihui Wang, Wenbo Zhu, Mengcheng Wang and Songshan Chen    
In order to study the pressure pulsation characteristics and structural dynamic response characteristics of a vertical shaft cross-flow pump, this study used a computational fluid dynamics (CFD) numerical simulation method to analyze the pressure pulsati... ver más
Revista: Water

 
Fansheng Zhang, Lianglin Dong, Hongbo Wang, Ke Zhong, Peiyuan Zhang and Jinyan Jiang    
During the construction of underground engineering, the prediction of groundwater distribution and rock body permeability is essential for evaluating the safety of the project and guiding subsequent design and construction. This article proposes an objec... ver más
Revista: Buildings

 
Ping Chen, Lufeng Nie, Jinrun Kang and Heng Liu    
With urban development and renewal, underground space is becoming more utilized. The design and use of open underground public space entrances and exits have become more and more frequent. As a pedestrian passage connecting indoors and outdoors, the wind... ver más
Revista: Buildings