Inicio  /  Buildings  /  Vol: 12 Par: 11 (2022)  /  Artículo
ARTÍCULO
TITULO

Finite Element Analysis of Axially Loaded RC Walls with Openings Strengthened Using Textile Reinforced Mortar for Sustainable Structures

Mohannad Alhusban and Azadeh Parvin    

Resumen

Sustainable solutions in the building construction industry promotes the use of innovative materials such as textile reinforced mortar (TRM) as a strengthening technique resulting in a reduced life-cycle cost. This paper presents a nonlinear finite element analysis (FEA) of TRM strengthened RC walls with cut-out openings under axial loading. FEA models were developed and validated with two experimental tests from the literature. Subsequently, a parametric study was performed to investigate the contribution of TRM in strengthening RC walls considering various opening sizes, types, numbers and orientations of window openings, and TRM strengthening configurations. The parametric study results revealed that strengthened models with smaller opening sizes had higher axial strength enhancement. Furthermore, the increase in the axial load capacities of walls with door and window openings were 34 and 26%, respectively, as compared to the corresponding control ones. TRM was more effective with a lower opening aspect ratio (Ho/Lo). In addition, confining the wall piers with U-shaped TRM jackets was the most effective configuration in improving the walls? axial strengths with maximum enhancements of 16 and 22% as compared to the models strengthened with side-bonded sheets and strips, respectively. Finally, the axial strengths of the FEA models were also compared with the existing empirical solution and showed reasonable correlation with an average discrepancy of 15%.

 Artículos similares

       
 
Baogui Zhou, Huabin Zhong, Kaipeng Yang, Xueqiang Yang, Chifeng Cai, Jie Xiao, Yongjian Liu and Bingxiang Yuan    
Based on a real engineering case, this study employs the MIDAS finite element software to model the reinforced high embankment slope using anti-sliding piles. The accuracy of the finite element method is verified by comparing calculated outcomes with fie... ver más
Revista: Buildings

 
Kai Li, Quan Liu, Yuan Tian, Cong Du and Zhixiang Xu    
Asphalt mixtures exhibit complex mechanical behaviors due to their multiphase internal structures. To provide better characterizations of asphalt pavements under various forms of potential distress, a two-dimensional (2D) finite element simulation based ... ver más
Revista: Buildings

 
Mark A. Denisenko, Alina S. Isaeva, Alexander S. Sinyukin and Andrey V. Kovalev    
The fast, convenient, and accurate determination of railroad cars? load mass is critical to ensure safety and allow asset counting in railway infrastructure. In this paper, we propose a method for modeling the mechanical deformations that occur in the ra... ver más
Revista: Infrastructures

 
Fang Dong, Zhongqi Shi, Rumian Zhong and Nan Jin    
In this paper, A high-order response surface method is proposed for finite element model updating of continuous beam bridges. Firstly, based on visual inspection and environmental vibration testing, the peak picking (PP) method and random subspace identi... ver más
Revista: Buildings

 
Sipho G. Thango, Georgios A. Drosopoulos, Siphesihle M. Motsa and Georgios E. Stavroulakis    
A methodology to predict key aspects of the structural response of masonry walls under blast loading using artificial neural networks (ANN) is presented in this paper. The failure patterns of masonry walls due to in and out-of-plane loading are complex d... ver más
Revista: Infrastructures