Inicio  /  Water  /  Vol: 9 Par: 11 (2017)  /  Artículo
ARTÍCULO
TITULO

An Integrated Approach Based on Numerical Modelling and Geophysical Survey to Map Groundwater Salinity in Fractured Coastal Aquifers

Costantino Masciopinto    
Isabella Serena Liso    
Maria Clementina Caputo and Lorenzo De Carlo    

Resumen

Aquifer over-exploitation may increase coastal seawater intrusion by reducing freshwater availability. Fractured subsurface formations commonly host important freshwater reservoirs along sea coasts. These water resources are particularly vulnerable to the contamination due to seawater infiltration occurring through rapid pathways via fractures. Modeling of density driven fluid flow in fractured aquifers is complex, as their hydrodynamics are controlled by interactions between preferential flow pathways, 3D interconnected fractures and rock-matrix porosity distribution. Moreover, physical heterogeneities produce highly localized water infiltrations that make the modeling of saltwater transport in such aquifers very challenging. The new approach described in this work provides a reliable hydrogeological model suitable to reproduce local advancements of the freshwater/saltwater wedge in coastal aquifers. The proposed model use flow simulation results to estimate water salinities in groundwater at a specific depth (1 m) below water table by means of positions of the Ghyben-Herzberg saltwater/freshwater sharp interface along the coast. Measurements of salinity in 25 boreholes (i.e., salinity profiles) have been used for the model calibration. The results provide the groundwater salinity map in freshwater/saltwater transition coastal zones of the Bari (Southern Italy) fractured aquifer. Non-invasive geophysical measurements in groundwater, particularly into vertical 2D vertical cross-sections, were carried out by using the electrical resistivity tomography (ERT) in order to validate the model results. The presented integrated approach is very easy to apply and gives very realistic salinity maps in heterogeneous aquifers, without simulating density driven water flow in fractures.

 Artículos similares

       
 
Tianyi Yang, Marcus White, Ruby Lipson-Smith, Michelle M. Shannon and Mehrnoush Latifi    
Changing the physical environment of healthcare facilities can positively impact patient outcomes. Virtual reality (VR) offers the potential to understand how healthcare environment design impacts users? perception, particularly among those with brain in... ver más
Revista: Buildings

 
Anik Baul, Gobinda Chandra Sarker, Prokash Sikder, Utpal Mozumder and Ahmed Abdelgawad    
Short-term load forecasting (STLF) plays a crucial role in the planning, management, and stability of a country?s power system operation. In this study, we have developed a novel approach that can simultaneously predict the load demand of different regio... ver más

 
Jie Zhang, Qiao Wang, Paul Mitchell and Hamed Ahmadi    
Revista: Information

 
Shuo Liu, Bohan Feng, Youyi Bi and Dan Yu    
Mobile robots play an important role in smart factories, though efficient task assignment and path planning for these robots still present challenges. In this paper, we propose an integrated task- and path-planning approach with precedence constrains in ... ver más
Revista: Applied Sciences

 
Jianhua Gao, Su Zhou, Yanda Lu and Wei Shen    
The multi-stack fuel cell system proposed in this paper can be applied to high-power generation, transport, and other engineering fields.
Revista: Applied Sciences