ARTÍCULO
TITULO

Using Machine Learning to Map Western Australian Landscapes for Mineral Exploration

Thomas Albrecht    
Ignacio González-Álvarez and Jens Klump    

Resumen

Landscapes evolve due to climatic conditions, tectonic activity, geological features, biological activity, and sedimentary dynamics. Geological processes at depth ultimately control and are linked to the resulting surface features. Large regions in Australia, West Africa, India, and China are blanketed by cover (intensely weathered surface material and/or later sediment deposition, both up to hundreds of metres thick). Mineral exploration through cover poses a significant technological challenge worldwide. Classifying and understanding landscape types and their variability is of key importance for mineral exploration in covered regions. Landscape variability expresses how near-surface geochemistry is linked to underlying lithologies. Therefore, landscape variability mapping should inform surface geochemical sampling strategies for mineral exploration. Advances in satellite imaging and computing power have enabled the creation of large geospatial data sets, the sheer size of which necessitates automated processing. In this study, we describe a methodology to enable the automated mapping of landscape pattern domains using machine learning (ML) algorithms. From a freely available digital elevation model, derived data, and sample landclass boundaries provided by domain experts, our algorithm produces a dense map of the model region in Western Australia. Both random forest and support vector machine classification achieve approximately 98% classification accuracy with a reasonable runtime of 48 minutes on a single Intel® Core? i7-8550U CPU core. We discuss computational resources and study the effect of grid resolution. Larger tiles result in a more contiguous map, whereas smaller tiles result in a more detailed and, at some point, noisy map. Diversity and distribution of landscapes mapped in this study support previous results. In addition, our results are consistent with the geological trends and main basement features in the region. Mapping landscape variability at a large scale can be used globally as a fundamental tool for guiding more efficient mineral exploration programs in regions under cover.

 Artículos similares

       
 
Dhiaa Musleh, Ali Alkhwaja, Ibrahim Alkhwaja, Mohammed Alghamdi, Hussam Abahussain, Mohammed Albugami, Faisal Alfawaz, Said El-Ashker and Mohammed Al-Hariri    
Obesity is increasingly becoming a prevalent health concern among adolescents, leading to significant risks like cardiometabolic diseases (CMDs). The early discovery and diagnosis of CMD is essential for better outcomes. This study aims to build a reliab... ver más

 
Tianyu Xi, Ming Wang, Enjia Cao, Jin Li, Yong Wang and Salanke Umar Sa?ad    
The thermal comfort evaluation of the urban environment arouses widespread concern among scholars, and research in this field is mostly based on thermal comfort evaluation indexes such as PMV, PET, SET, UTCI, etc. These thermal comfort index evaluation m... ver más
Revista: Buildings

 
Peter K. K. Loh, Aloysius Z. Y. Lee and Vivek Balachandran    
The rise in generative Artificial Intelligence (AI) has led to the development of more sophisticated phishing email attacks, as well as an increase in research on using AI to aid the detection of these advanced attacks. Successful phishing email attacks ... ver más
Revista: Future Internet

 
Zijia Zheng, Yizhu Jiang, Qiutong Zhang, Yanling Zhong and Lizheng Wang    
The timely monitoring of urban water bodies using unmanned aerial vehicle (UAV)-mounted remote sensing technology is crucial for urban water resource protection and management. Addressing the limitations of the use of satellite data in inferring the wate... ver más
Revista: Water

 
Juan Ma, Qiang Yang, Mingzhi Zhang, Yao Chen, Wenyi Zhao, Chengyu Ouyang and Dongping Ming    
Accurately predicting landslide deformation based on monitoring data is key to successful early warning of landslide disasters. Landslide displacement?time curves offer an intuitive reflection of the landslide motion process and deformation predictions o... ver más
Revista: Water