ARTÍCULO
TITULO

Mapping Climate Parameters over the Territory of Botswana Using GMT and Gridded Surface Data from TerraClimate

Polina Lemenkova    

Resumen

This articles presents a new series of maps showing the climate and environmental variability of Botswana. Situated in southern Africa, Botswana has an arid to semi-arid climate, which significantly varies in its different regions: Kalahari Desert, Makgadikgadi Pan and Okavango Delta. While desert regions are prone to droughts and periods of extreme heat during the summer months, other regions experience heavy downpours, as well as episodic and unpredictable rains that affect agricultural activities. Such climatic variations affect social and economic aspects of life in Botswana. This study aimed to visualise the non-linear correlations between the topography and climate setting at the country?s scale. Variables included T °C min, T °C max, precipitation, soil moisture, evapotranspiration (PET and AET), downward surface shortwave radiation, vapour pressure and vapour pressure deficit (VPD), wind speed and Palmer Drought Severity Index (PDSI). The dataset was taken from the TerraClimate source and GEBCO for topographic mapping. The mapping approach included the use of Generic Mapping Tools (GMT), a console-based scripting toolset, which enables the use of a scripting method of automated mapping. Several GMT modules were used to derive a set of climate parameters for Botswana. The data were supplemented with the adjusted cartographic elements and inspected by the Geospatial Data Abstraction Library (GDAL). The PDSI in Botswana in 2018 shows stepwise variation with seven areas of drought: (1) -3.7 to -2.2. (extreme); (2) -2.2 to -0.8 (strong, southern Kalahari); (3) -0.8 to 0.7 (significant, central Kalahari; (4) 0.7 to 2.1 (moderate); (5) 2.1 to 3.5 (lesser); (6) 3.5 to 4.9 (low); (7) 4.9 to 6.4 (least). The VPD has a general trend towards the south-western region (Kalahari Desert, up to 3.3), while it is lower in the north-eastern region of Botswana (up to 1.4). Other values vary respectively, as demonstrated in the presented 12 maps of climate and environmental inventory in Botswana.

 Artículos similares

       
 
Samantha Schultz, Koreen Millard, Samantha Darling and René Chénier    
Peatlands provide vital ecosystem and carbon services, and Canada is home to a significant peatland carbon stock. Global climate warming trends are expected to lead to increased carbon release from peatlands, as a consequence of drought and wildfire. Mon... ver más
Revista: Hydrology

 
Ryunosuke Komura and Masayuki Matsuoka    
Malaria is a major public health concern, and accurate mapping of malaria risk is essential to effectively managing the disease. However, current models are unable to predict malaria risk with high temporal and spatial resolution. This study describes a ... ver más

 
Eric Teitelbaum, Clayton Miller and Forrest Meggers    
The psychrometric chart is the most common data visualization technique for the designers of thermal comfort systems worldwide. From its humble roots as means of expressing the characteristics of air in building systems design, the use of the chart has g... ver más
Revista: Buildings

 
Tusharkanti Kumar and Izuru Saizen    
Indigenous knowledge of local environments is crucial for developing innovative and contextual climate change adaptation strategies. Although the significance of community-led efforts based on this knowledge has been well acknowledged, they have not been... ver más
Revista: Water

 
Fatima Zahra Echogdali, Said Boutaleb, Mohamed Abioui, Mohamed Aadraoui, Amine Bendarma, Rosine Basseu Kpan, Mustapha Ikirri, Manal El Mekkaoui, Sara Essoussi, Hasna El Ayady, Kamal Abdelrahman and Mohammed S. Fnais    
Water scarcity affects all continents, with approximately 1.2 billion people living in areas where water is physically lacking. This scarcity is more accentuated in countries with an arid climate, and its impact becomes more threatening when the economy ... ver más
Revista: Water