Inicio  /  Applied Sciences  /  Vol: 13 Par: 15 (2023)  /  Artículo
ARTÍCULO
TITULO

Research on Deformation and Loose Zone Characteristics of Large Cross Section Tunnel in High Geo-Stress Soft Rock

Dong Ma    
Zhongsheng Tan    
Linlin Bian    
Baojin Zhang and Jinpeng Zhao    

Resumen

In constructing high-geo-stress soft rock tunnels, the major deformation disaster of the surrounding rock has always been the main problem faced during construction. The research on the deformation and loose zone characteristics of large deformation tunnels has positive significance for the safe and rapid construction of tunnels. Therefore, based on the Yuntunpu large deformation tunnel, this article first analyzes the geological and deformation characteristics of the tunnel site area in response to the problem of high-geo-stress soft rock large deformation. Subsequently, on-site testing and analysis were conducted on the loose zone characteristics of four tunnel sections. Finally, based on the comprehensive analysis of tunnel deformation and loose zone characteristics, the causes of large deformation in the tunnel are analyzed. The results indicate that the large deformation characteristics of the Yuntunpu Tunnel are mainly manifested as a large initial deformation rate of the surrounding rock, a short self-stabilization time of the surrounding rock, a large cumulative deformation amount, and a long deformation duration. The Yuntunpu Tunnel is influenced by the grade and structure of the surrounding rock, with a loosening zone ranging from 12 to 14 m, and the wave velocity variation characteristics exhibited by different grades of surrounding rock vary greatly. Adopting collaborative active control of long and short anchor rods is recommended to limit the continued development of loose zones and the deformation of surrounding rocks. The large deformation of tunnels is mainly affected by high geo-stress, formation lithology, geological structure, engineering disturbance, and groundwater. Among them, high geo-stress and formation lithology are the decisive and important factors for the occurrence of major deformation disasters in the tunnel.

 Artículos similares

       
 
Hao Chai, Xi?an Li, Biao Qin, Weiping Wang and Mani Axel    
The volumetric change in unsaturated loess during loading causes serious damage to the foundation and structure, accompanied by changes in hydraulic conditions. Therefore, quantifying the change in the load effect of loess under hydraulic coupling is of ... ver más
Revista: Water

 
Bicheng Zhou, Anatoly V. Brouchkov and Jiabo Hu    
Frost heaving in soils is a primary cause of engineering failures in cold regions. Although extensive experimental and numerical research has focused on the deformation caused by frost heaving, there is a notable lack of numerical investigations into the... ver más
Revista: Water

 
Qihang Li, Yunmin Wang, Xiaoshuang Li and Bin Gong    
This research examines how rainfall and mining affect the slope damage resulting from the transition from open-pit mining to underground mining. Using an unmanned aerial vehicle (UAV), the Huangniu slope of the Dexing Copper Mine was fully characterized,... ver más
Revista: Water

 
Ahlam A. Abbood, Nazar Oukaili, Abbas A. Allawi and George Wardeh    
This study aimed to evaluate the effectiveness of a novel concrete-encased column (CE) using small circular steel tubes filled with cementitious grouting material (GFST) as the primary reinforcement instead of traditional steel bars. The research involve... ver más
Revista: Infrastructures

 
Ahmed Abouelsaad, Greg White and Ali Jamshidi    
Asphalt mixtures age during service in the field, primarily as the result of chemical changes in the bituminous binder phase. The ageing phenomenon changes the properties of the asphalt mixture, including the stiffness modulus, the resistance to deformat... ver más
Revista: Infrastructures