ARTÍCULO
TITULO

Detection of Small Objects in Side-Scan Sonar Images Using an Enhanced YOLOv7-Based Approach

Feihu Zhang    
Wei Zhang    
Chensheng Cheng    
Xujia Hou and Chun Cao    

Resumen

Deep learning-based object detection methods have demonstrated remarkable effectiveness across various domains. Recently, there has been growing interest in applying these techniques to underwater environments. Conventional optical imaging methods face severe limitations when operating in underwater conditions, restricting their ability to identify objects with good visibility and at close distances. Consequently, side-scan sonar (SSS) has emerged as a common equipment choice for underwater detection due to its compatibility with the characteristics of sound waves in water. This paper introduces a novel method, termed the Enhanced YOLOv7-Based Approach, for detecting small objects in SSS images. Building upon the widely-adopted YOLOv7 method, the proposed approach incorporates several enhancements aimed at improving detection accuracy. First, a dedicated detection layer tailored for small objects is added to the original network architecture. Additionally, two attention mechanisms are integrated within the backbone and neck components of the network, respectively, to strengthen the network?s focus on object features. Finally, the network features are recombined based on the BiFPN structure. Experimental results demonstrate that the proposed method outperforms mainstream object detection algorithms. In comparison to the original YOLOv7 network, it achieves a Precision of 95.5%, indicating a significant improvement of 4.8%. Moreover, its Recall reaches 87.0%, representing an enhancement of 5.1%, while the mean Average Precision (mAP) at an IoU threshold of 0.5 (mAP@.5) reaches 86.9%, reflecting a 6.7% improvement. Furthermore, the mAP@.5:.95 reaches 55.1%, a 4.8% enhancement. Therefore, the method presented in this paper enhances the performance of YOLOv7 for object detection in SSS images, providing a fresh perspective on small object detection based on SSS images and contributing to the advancement of underwater detection techniques.

 Artículos similares

       
 
Yiming Mo, Lei Wang, Wenqing Hong, Congzhen Chu, Peigen Li and Haiting Xia    
The intrusion of foreign objects on airport runways during aircraft takeoff and landing poses a significant safety threat to air transportation. Small-scale Foreign Object Debris (FOD) cannot be ruled out on time by traditional manual inspection, and the... ver más
Revista: Applied Sciences

 
Linhua Zhang, Ning Xiong, Wuyang Gao and Peng Wu    
With the exponential growth of remote sensing images in recent years, there has been a significant increase in demand for micro-target detection. Recently, effective detection methods for small targets have emerged; however, for micro-targets (even fewer... ver más
Revista: Information

 
Ru Ye, Hongyan Xing and Xing Zhou    
Addressing the limitations of manually extracting features from small maritime target signals, this paper explores Markov transition fields and convolutional neural networks, proposing a detection method for small targets based on an improved Markov tran... ver más

 
Yuntao Shi, Qi Luo, Meng Zhou, Wei Guo, Jie Li, Shuqin Li and Yu Ding    
Objects thrown from tall buildings in communities are characterized by their small size, inconspicuous features, and high speed. Existing algorithms for detecting such objects face challenges, including excessive parameters, overly complex models that ar... ver más
Revista: Information

 
Zhao Xiong and Jiang Wu    
Malaria is one of the major global health threats. Microscopic examination has been designated as the ?gold standard? for malaria detection by the World Health Organization. However, it heavily relies on the experience of doctors, resulting in long diagn... ver más
Revista: Information