Inicio  /  Buildings  /  Vol: 14 Par: 2 (2024)  /  Artículo
ARTÍCULO
TITULO

Skin Heat Transfer and Thermal Sensation Coupling Model under Steady Stimulation

Yijia Zhou    
Hang Yu    
Maohui Luo and Xiang Zhou    

Resumen

Thermal sensation prediction models can help to evaluate complex thermal environments and guide the environment conditioning strategy. However, most existing models are established basing on the thermal status of the entire human body or local body parts, failing to reflect thermal sensation generating mechanism or micro-scale (centimeter-scale) thermal sensation. This study put forward a new thermal sensation predicting approach by coupling the skin heat transfer and the thermoreceptor impulse signals. The micro-scale thermal sensitivity data under steady stimuli were applied to bridging the objective heat transfer model and the subjective sensation model. The model contains a one-dimensional skin heat transfer equation and three sensation-generating equations: the thermoreceptor impulse equation, the psychosensory intensity equation, and the thermal sensation equation. The dimension of the skin heat transfer equation was determined through a skin temperature diffusion experiment, and the coefficients of the static/dynamic impulse in the thermoreceptor impulse equation and the thermal sensation equation were obtained through polynomial fitting using thermal sensitivity data. The validated mean absolute percentage error (MAPE) was 0.08 and 0.1 under cooling and heating stimuli, respectively. This new model can predict thermal sensation on the centimeter scale and be applied under different boundary conditions. In the future, the new model can be further developed by testing dynamic stimuli and other boundary conditions so that it can be applied to more complex thermal exposures.

 Artículos similares

       
 
Roberto Agromayor, Bernhard Müller and Lars O. Nord    
Annular diffusers are frequently used in turbomachinery applications to recover the discharge kinetic energy and increase the total-to-static isentropic efficiency. Despite its strong influence on turbomachinery performance, the diffuser is often neglect... ver más