ARTÍCULO
TITULO

Modeling and Prediction of Environmental Factors and Chlorophyll a Abundance by Machine Learning Based on Tara Oceans Data

Zhendong Cui    
Depeng Du    
Xiaoling Zhang and Qiao Yang    

Resumen

It is of great theoretical and practical significance to understand the inherent relationship and evolution patterns among various environmental factors in the oceans. In this study, we used scientific data obtained by the Tara Oceans Project to conduct a comprehensive correlation analysis of marine environmental factors. Using artificial intelligence and machine learning methods, we evaluated different methods of modeling and predicting chlorophyll a (Chl-a) concentrations at the surface water layer of selected Tara Oceans data after the raw data processing. Then, a Pearson correlation and characteristic importance analysis between marine environmental factors and the Chl-a concentrations was conducted, and thus a comprehensive correlation model for environmental factors was established. With these obtained data, we developed a new prediction model for the Chl-a abundance based on the eXtreme Gradient Boosting (XGBoost) algorithm with intelligent parameter optimization strategy. The proposed model was used to analyze and predict the abundance of Chl-a abundance of TOP. The obtained predicted results were also compared with those by using other three widely-used machine learning methods including the random forest (RF), support vector regression (SVR) and linear regression (LR) algorithms. Our results show that the proposed comprehensive correlation evaluation model can identify the effective features closely related to Chl-a, abundance, and the prediction model can reveal the potential relationship between environmental factors and the Chl-a concentrations in the oceans.

 Artículos similares

       
 
Fahad Alshehri and Mark Ross    
This hydrological study investigated a combined rating methodology tested on a 14,090 km2 area in Southwest Florida. The approach applied the Hydrological Simulation Program-Fortran (HSPF) over a 23-year period and was validated by 28 stream gauging stat... ver más
Revista: Water

 
Heba El-Bagoury and Ahmed Gad    
Flooding is a natural disaster with extensive impacts. Desert regions face altered flooding patterns owing to climate change, water scarcity, regulations, and rising water demands. This study assessed and predicted flash flood hazards by calculating disc... ver más
Revista: Water

 
Angel E. Muñoz-Zavala, Jorge E. Macías-Díaz, Daniel Alba-Cuéllar and José A. Guerrero-Díaz-de-León    
This paper reviews the application of artificial neural network (ANN) models to time series prediction tasks. We begin by briefly introducing some basic concepts and terms related to time series analysis, and by outlining some of the most popular ANN arc... ver más
Revista: Algorithms

 
Kefei Zhu, Xu Yang, Yanbo Zhang, Mengkun Liang and Jun Wu    
With the rising popularity of the Advanced Driver Assistance System (ADAS), there is an increasing demand for more human-like car-following performance. In this paper, we consider the role of heterogeneity in car-following behavior within car-following m... ver más
Revista: Algorithms

 
Gilbert Hinge, Mohamed A. Hamouda and Mohamed M. Mohamed    
In recent years, there has been a growing interest in flood susceptibility modeling. In this study, we conducted a bibliometric analysis followed by a meta-data analysis to capture the nature and evolution of literature, intellectual structure networks, ... ver más
Revista: Water