Inicio  /  Applied Sciences  /  Vol: 14 Par: 5 (2024)  /  Artículo
ARTÍCULO
TITULO

GCN?Informer: A Novel Framework for Mid-Term Photovoltaic Power Forecasting

Wei Zhuang    
Zhiheng Li    
Ying Wang    
Qingyu Xi and Min Xia    

Resumen

Predicting photovoltaic (PV) power generation is a crucial task in the field of clean energy. Achieving high-accuracy PV power prediction requires addressing two challenges in current deep learning methods: (1) In photovoltaic power generation prediction, traditional deep learning methods often generate predictions for long sequences one by one, significantly impacting the efficiency of model predictions. As the scale of photovoltaic power stations expands and the demand for predictions increases, this sequential prediction approach may lead to slow prediction speeds, making it difficult to meet real-time prediction requirements. (2) Feature extraction is a crucial step in photovoltaic power generation prediction. However, traditional feature extraction methods often focus solely on surface features, and fail to capture the inherent relationships between various influencing factors in photovoltaic power generation data, such as light intensity, temperature, and more. To overcome these limitations, this paper proposes a mid-term PV power prediction model that combines Graph Convolutional Network (GCN) and Informer models. This fusion model leverages the multi-output capability of the Informer model to ensure the timely generation of predictions for long sequences. Additionally, it harnesses the feature extraction ability of the GCN model from nodes, utilizing graph convolutional modules to extract feature information from the ?query? and ?key? components within the attention mechanism. This approach provides more reliable feature information for mid-term PV power prediction, thereby ensuring the accuracy of long sequence predictions. Results demonstrate that the GCN?Informer model significantly reduces prediction errors while improving the precision of power generation forecasting compared to the original Informer model. Overall, this research enhances the prediction accuracy of PV power generation and contributes to advancing the field of clean energy.

 Artículos similares

       
 
Nan Lao Ywet, Aye Aye Maw, Tuan Anh Nguyen and Jae-Woo Lee    
Urban Air Mobility (UAM) emerges as a transformative approach to address urban congestion and pollution, offering efficient and sustainable transportation for people and goods. Central to UAM is the Operational Digital Twin (ODT), which plays a crucial r... ver más
Revista: Aerospace

 
Yacong Wu, Jun Huang, Boqian Ji and Lei Song    
Most existing studies on aerodynamic shape optimization have not considered longitudinal trim under control surface deflection, typically achieving self-trim through a constraint of zero pitching moment or adjusting the optimized configuration for longit... ver más
Revista: Aerospace

 
Eri Itoh, Koji Tominaga, Michael Schultz and Vu N. Duong    
Free route airspace allows airspace users to freely plan a route in en-route airspaces within certain restrictions. It is anticipated to offer the benefit of fuel saving and operational flexibility. Regarding its efficient implementation into the ASEAN a... ver más
Revista: Aerospace

 
Jih-Jeng Huang and Chin-Yi Chen    
Cooperative alternatives need complex multi-criteria decision-making (MCDM) consideration, especially in resource allocation, where the alternatives exhibit interdependent relationships. Traditional MCDM methods like the Analytic Hierarchy Process (AHP) ... ver más
Revista: Algorithms

 
Xiaoou Li    
This paper tackles the challenge of time series forecasting in the presence of missing data. Traditional methods often struggle with such data, which leads to inaccurate predictions. We propose a novel framework that combines the strengths of Generative ... ver más
Revista: Information