ARTÍCULO
TITULO

Adaptive Finite-Time Backstepping Integral Sliding Mode Control of Three-Degree-of-Freedom Stabilized System for Ship Propulsion-Assisted Sail Based on the Inverse System Method

Sheng Liu    
Jian Song    
Lanyong Zhang and Yinchao Tan    

Resumen

The three-degree-of-freedom (3-DOF) stabilized control system for ship propulsion-assisted sails is used to control the 3-DOF motion of sails to obtain offshore wind energy. The attitude of the sail is adjusted to ensure optimal thrust along the target course. An adaptive finite-time backstepping integral sliding mode control based on the inverse system method (ABISMC-ISM) is presented for attitude tracking of the sail. Considering the nonlinear dynamics and strong coupling of the system, a decoupling strategy is established using the inverse system method (ISM). Constructing inverse dynamics to eliminate internal coupling, the system is transformed into independent pseudolinear subsystems. For the decoupled open-loop subsystems, an adaptive finite-time backstepping integral sliding mode control is designed to achieve closed-loop control. A backstepping-based integral sliding surface is proposed to eliminate the phase-reaching stage of the sliding surface. Considering the unmodelled dynamics and external disturbances, an adaptive extreme learning machine (AELM) was designed to estimate the disturbances. Furthermore, a sliding mode reaching law based on finite-time theory was employed to ensure that the system returns to the sliding surface in a finite time under chattering conditions. Experiments on a principle prototype demonstrate the effectiveness and energy-saving performance of the proposed method.

 Artículos similares

       
 
Joachim Schulze, Simon Gehrmann, Avikal Somvanshi and Annette Rudolph-Cleff    
The summer of 2022 was one of the hottest and driest summers that Germany experienced in the 21st century. Water levels in rivers sank dramatically with many dams and reservoirs running dry; as a result, fields could not be irrigated sufficiently, and ev... ver más
Revista: Water

 
Miniyenkosi Ngcukayitobi, Lagouge Kwanda Tartibu and Flávio Bannwart    
Waste heat recovery stands out as a promising technique for tackling both energy shortages and environmental pollution. Currently, this valuable resource, generated through processes like fuel combustion or chemical reactions, is often dissipated into th... ver más
Revista: AI

 
Chen Xia, Christian Eduardo Verdonk Gallego, Adrián Fabio Bracero, Víctor Fernando Gómez Comendador and Rosa María Arnaldo Valdés    
This paper investigates the impact of trajectory predictor performance on the encounter probability generated by an adaptive conflict detection tool and examines the flexibility of the tool dependent on its adjustable thresholds, using historical radar t... ver más
Revista: Aerospace

 
Ye Xiao, Yupeng Hu, Jizhao Liu, Yi Xiao and Qianzhen Liu    
Ship trajectory prediction is essential for ensuring safe route planning and to have advanced warning of the dangers at sea. With the development of deep learning, most of the current research has explored advanced prediction methods based on historical ... ver más

 
Changfeng Yuan, Xing Sun, Qing Zhang, Lulu Niu and Shasha Meng    
Maritime hazardous chemical transportation accidents have the characteristics of strong suddenness, wide influence, and great harm. To analyze the ability of a maritime hazardous chemical transportation system (MHCTS) to cope with sudden disturbance even... ver más