Inicio  /  Water  /  Vol: 16 Par: 6 (2024)  /  Artículo
ARTÍCULO
TITULO

Robust Adaptive Control of the Offshore Produced Water Treatment Process: An Improved Multivariable MRAC-Based Approach

Mahsa Kashani    
Stefan Jespersen and Zhenyu Yang    

Resumen

The application of deoiling hydrocyclone systems as the downstream of three-phase gravity separator (TPGS) systems is one of the most commonly deployed produced water treatment processes in offshore oil and gas production. Due to the compact system?s complexity and tailor-made features, it is always challenging to develop some optimally coordinated control solution for the coupled hydrocyclone and TPGS systems. It is obvious that coordinated control can better fulfill legislative discharge regulation by robustly maintaining high separation efficiencies. This paper presents a new control solution for a set of integrated hydrocyclone and TPGS systems by applying an improved multi-variable model reference adaptive control (MV-MRAC) approach with the aim of achieving both asymptotic output tracking and unknown disturbance rejection. A robust MV-MRAC controller design is proposed based on a control parameterization derived from a factorization of a high-frequency gain matrix ????=?????? K p = L D S as a product of three matrices, where L represents unity lower triangular, ??=????????(??) D = s i g n ( D ) represents diagonal, and S represents positive definite, and a teaching?learning-based optimization (TLBO) algorithm for optimizing the adaption rates. The developed solution is analyzed and compared with a commonly deployed PI control solution on a model that is derived from a lab-scale produced water treatment process. This simulation study demonstrates the promising potential of the proposed control solution compared with the currently deployed PI control solution.

 Artículos similares

       
 
Juan Luis Pérez-Ruiz, Yu Tang, Igor Loboda and Luis Angel Miró-Zárate    
In the field of aircraft engine diagnostics, many advanced algorithms have been proposed over the last few years. However, there is still wide room for improvement, especially in the development of more integrated and complete engine health management sy... ver más
Revista: Aerospace

 
Ryota Higashimoto, Soh Yoshida and Mitsuji Muneyasu    
This paper addresses the performance degradation of deep neural networks caused by learning with noisy labels. Recent research on this topic has exploited the memorization effect: networks fit data with clean labels during the early stages of learning an... ver más
Revista: Applied Sciences

 
Woonghee Lee, Mingeon Ju, Yura Sim, Young Kul Jung, Tae Hyung Kim and Younghoon Kim    
Deep learning-based segmentation models have made a profound impact on medical procedures, with U-Net based computed tomography (CT) segmentation models exhibiting remarkable performance. Yet, even with these advances, these models are found to be vulner... ver más
Revista: Applied Sciences

 
Yuting Chen, Pengjun Zhao, Yi Lin, Yushi Sun, Rui Chen, Ling Yu and Yu Liu    
Precise identification of spatial unit functional features in the city is a pre-condition for urban planning and policy-making. However, inferring unknown attributes of urban spatial units from data mining of spatial interaction remains a challenge in ge... ver más

 
Haohao Guo, Tianxiang Xiang, Yancheng Liu, Qiaofen Zhang, Yi Wei and Fengkui Zhang    
This paper proposes a new method for compensating current measurement errors in shipboard permanent magnet propulsion motors. The method utilizes cascade decoupling second-order generalized integrators (SOGIs) and adaptive linear neurons (ADALINEs) as th... ver más