Inicio  /  Water  /  Vol: 16 Par: 4 (2024)  /  Artículo
ARTÍCULO
TITULO

Daily Runoff Prediction with a Seasonal Decomposition-Based Deep GRU Method

Feifei He    
Qinjuan Wan    
Yongqiang Wang    
Jiang Wu    
Xiaoqi Zhang and Yu Feng    

Resumen

Accurately predicting hydrological runoff is crucial for water resource allocation and power station scheduling. However, there is no perfect model that can accurately predict future runoff. In this paper, a daily runoff prediction method with a seasonal decomposition-based-deep gated-recurrent-unit (GRU) method (SD-GRU) is proposed. The raw data is preprocessed and then decomposed into trend, seasonal, and residual components using the seasonal decomposition algorithm. The deep GRU model is then used to predict each subcomponent, which is then integrated into the final prediction results. In particular, the hyperparameter optimization algorithm of tree-structured parzen estimators (TPE) is used to optimize the model. Moreover, this paper introduces the single machine learning model (including multiple linear regression (MLR), back propagation (BP), long short-term memory neural network (LSTM) and gate recurrent unit (GRU)) and a combination model (including seasonal decomposition?back propagation (SD-BP), seasonal decomposition?multiple linear regression (SD-MLR), along with seasonal decomposition?long-and-short-term-memory neural network (SD-LSTM), which are used as comparison models to verify the excellent prediction performance of the proposed model. Finally, a case study of the Qingjiang Shuibuya test set, which considers the period 1 January 2019 to 31 December 2019, is conducted. Case studies of the Qingjiang River show the proposed model outperformed the other models in prediction performance. The model achieved a mean absolute error (MAE) index of 38.5, a Nash-Sutcliffe efficiency (NSE) index of 0.93, and a coefficient of determination (R2) index of 0.7. In addition, compared to the comparison model, the NSE index of the proposed model increased by 19.2%, 19.2%, 16.3%, 16.3%, 2.2%, 2.2%, and 1.1%, when compared to BP, MLR, LSTM, GRU, SD-BP, SD-MLR, SD-LSTM, and SD-GRU, respectively. This research can provide an essential reference for the study of daily runoff prediction models.

 Artículos similares

       
 
Gordon Gilja, Neven Kuspilic, Martina Lacko and Davor Romic    
Rainfed agriculture is dependent on rainfall and runoff patterns, especially in lowland areas that rely on pumping operation to remove excess water from the drainage network. Polder areas are extremely vulnerable to saltwater intrusion and subsequent soi... ver más
Revista: Hydrology

 
Ying Ouyang, John A. Stanturf, Marcus D. Williams, Evgeniy Botmann and Palle Madsen    
Estimation of hydrological processes is critical to water resource management, water supply planning, ecological protection, and climate change impact assessment. Mountains in Central Asia are the major source of water for rivers and agricultural practic... ver más
Revista: Hydrology

 
Joel Hernández-Bedolla, Liliana García-Romero, Chrystopher Daly Franco-Navarro, Sonia Tatiana Sánchez-Quispe and Constantino Domínguez-Sánchez    
Precipitation is influential in determining runoff at different scales of analysis, whether in minutes, hours, or days. This paper proposes the use of a multisite multivariate model of precipitation at a daily scale. Stochastic models allow the generatio... ver más
Revista: Water

 
Ammar Adham, Rasha Abed, Karrar Mahdi, Waqed H. Hassan, Michel Riksen and Coen Ritsema    
Rainwater Catchment System Reliability (RCSR) is the chance that a system will deliver the required water for an interval of time. Rainwater Harvesting (RWH) is gaining popularity as a potential alternative water source for household or agricultural use.... ver más
Revista: Water

 
Giuseppe Marco Tina and Claudio Francesco Nicolosi    
The increasing presence of non-programmable renewable energy plants increases the intermittency of the electricity supply and thus threatens the adequacy of a power system. Hydropower can solve this problem due to its flexibility. This paper applies stat... ver más
Revista: Applied Sciences