ARTÍCULO
TITULO

Scale-Resolving Hybrid RANS-LES Simulation of a Model Kaplan Turbine on a 400-Million-Element Mesh

Simon Joßberger and Stefan Riedelbauch    

Resumen

Double-regulated Kaplan turbines with adjustable guide vanes and runner blades offer a high degree of flexibility and good efficiency for a wide range of operating points. However, this also leads to a complex geometry and flow guidance with, for example, vortices of different sizes and strengths. The flow in a draft tube is especially challenging to simulate mainly due to flow phenomena, like swirl, separation and strong adverse pressure gradients, and a strong dependency on the upstream flow conditions. Standard simulation approaches with RANS turbulence models, a coarse mesh and large time step size often fail to correctly predict performance and can even lead to wrong tendencies in the overall behavior. To reveal occurring flow phenomena and physical effects, a scale-resolving hybrid RANS-LES simulation on a block structured mesh of about 400 million hexahedral elements of a double-regulated five-blade model Kaplan turbine is carried out. In this paper, first, the results of the ongoing simulation are presented. The major part of the simulation domain is running in LES mode and seems to be properly resolved. The validation of the simulation results with the experimental data shows mean deviations of less than 0.8% in the global results, i.e., total head and power, and a good visual agreement with the three-dimensional PIV measurements of the velocity in the cone and both diffuser channels of the draft tube. In particular, the trend of total head and the results for the draft tube differ significantly between the scale-resolving simulation and a standard RANS simulation. The standard RANS simulation exhibits a highly unsteady behavior of flow, which is not observed in the experiments or scale-resolving simulation.

 Artículos similares

       
 
Zhike Zou, Longcang Shu, Xing Min and Esther Chifuniro Mabedi    
The artificial recharge of stormwater is an effective approach for replenishing aquifer and reduce urban waterlogging, but prone to clogging by suspended particles (SP) that are highly heterogeneously sized. In this paper, the transport and deposition of... ver más
Revista: Water

 
Yadong Zhu, Haifeng Jiao, Shihui Wang, Wenbo Zhu, Mengcheng Wang and Songshan Chen    
In order to study the pressure pulsation characteristics and structural dynamic response characteristics of a vertical shaft cross-flow pump, this study used a computational fluid dynamics (CFD) numerical simulation method to analyze the pressure pulsati... ver más
Revista: Water

 
Jian Wang, Ze Chen, Linghao Li, Chuan Wang, Kangle Teng, Qiang He, Jiren Zhou, Shanshan Li, Weidong Cao, Xiuli Wang and Hongliang Wang    
Submersible tubular pumps are an ideal choice for pump stations that require high flow rates and low lift. These pumps combine the unique features of submersible motors with axial flow pump technology, making them highly efficient and cost-effective. The... ver más
Revista: Water

 
Stan Wehbe, Feleke Zewge, Yoshihiko Inagaki, Wolfram Sievert, Tirumala Uday Kumar Nutakki and Akshay Deshpande    
A mechanistic model was developed to simulate one-dimensional pesticide transport in two-stage vertical flow constructed wetland. The two pesticides taken under study were carbendazim and chlorothalonil. The water flow patterns within the constructed wet... ver más
Revista: Water

 
Hannes Zöschg    
Trash racks installed at hydropower plants cause head losses that reduce energy output. Previous research has thoroughly investigated head losses through both experimental and field studies. However, only a limited number of numerical studies have been p... ver más
Revista: Water