ARTÍCULO
TITULO

A CHEMTAX Study Based on Picoeukaryotic Phytoplankton Pigments and Next-Generation Sequencing Data from the Ulleungdo?Dokdo Marine System of the East Sea (Japan Sea): Improvement of Long-Unresolved Underdetermined Bias

Myung Jin Hyun    
Jongseok Won    
Dong Han Choi    
Howon Lee    
Yeonjung Lee    
Charity Mijin Lee    
Chan Hong Park and Jae Hoon Noh    

Resumen

The CHEMTAX program has been widely used to estimate community composition based on major pigment concentrations in seawater. However, because CHEMTAX is an underdetermined optimization algorithm, underdetermined bias has remained an unsolved problem since its development in 1996. The risk of producing biased results increases when analyzing the picophytoplankton community; therefore, this study tested a new method for avoiding biased CHEMTAX results using the picophytoplankton community around the East Sea (Japan Sea). This method involves building a linear model between pigment concentration data and community composition data based on DNA sequencing to predict the pigment range for each operational taxonomic unit, based on the 95% prediction interval. Finally, the range data are transformed into an initial ratio and ratio limits for CHEMTAX analysis. Three combinations of initial ratios and ratio limits were tested to determine whether the modeled initial ratio and ratio limit could prevent underdetermined bias in the CHEMTAX estimates; these combinations were the modeled initial ratio and ratio limit, the modeled initial ratio with a default ratio limit of 500 s, and an initial ratio from previous research with the default ratio limit. The final ratio and composition data for each combination were compared with Bayesian compositional estimator-based final ratio and composition data, which are robust against underdetermined bias. Only CHEMTAX analysis using the modeled initial ratio and ratio limit was unbiased; all other combinations showed significant signs of bias. Therefore, the findings in this study indicate that ratio limits and the initial ratio are equally important in the CHEMTAX analysis of biased datasets. Moreover, we obtained statistically supported initial ratios and ratio limits through linear modeling of pigment concentrations and 16s rDNA composition data.

 Artículos similares

       
 
Ning Hu, Gangchen Sun, Feng Liu, Bai Yang and Hailing Li    
In order to study the influence of falling rock shapes on their rolling characteristics and to determine the optimization of falling rock protection design, a series of research experiments were conducted. Model experiments were designed to explore the r... ver más
Revista: Applied Sciences

 
Jiuzhi Fu, Yang Zhang and Yanyue Qin    
In this investigation, the effects of different fabrics with 0.20% carbon fiber textile (CFT), 0.21% glass fiber textile (GFT), and 0.25% basalt fiber textile (BFT) on the properties of TR-UHPC were investigated by axial tensile tests. A bending test of ... ver más
Revista: Applied Sciences

 
Hao Chai, Xi?an Li, Biao Qin, Weiping Wang and Mani Axel    
The volumetric change in unsaturated loess during loading causes serious damage to the foundation and structure, accompanied by changes in hydraulic conditions. Therefore, quantifying the change in the load effect of loess under hydraulic coupling is of ... ver más
Revista: Water

 
Ryan Good, David Nguyen, Hossein Bonakdari, Andrew Binns and Bahram Gharabaghi    
Predicting morphological adjustments in alluvial meandering streams remains a challenging task due to the complex nature of the governing inter-related dynamic flow and sediment transport processes. This difficulty is increased in streams with irregular ... ver más
Revista: Water

 
Zhe Chen, Wenying Yu, Yingjian Zhan, Zheng Chen, Tengda Han, Weiwei Song and Yueyue Zhou    
High concentrations of nitrite in marine aquaculture wastewater not only pose a threat to the survival and immune systems of aquatic organisms but also contribute to eutrophication, thereby impacting the balance of coastal ecosystems. Compared to traditi... ver más
Revista: Water