Inicio  /  Hydrology  /  Vol: 11 Par: 2 (2024)  /  Artículo
ARTÍCULO
TITULO

Expanding Karst Groundwater Tracing Techniques: Incorporating Population Genetic and Isotopic Data to Enhance Flow-Path Characterization

Benjamin W. Tobin    
Benjamin V. Miller    
Matthew L. Niemiller and Andrea M. Erhardt    

Resumen

Karst aquifers are unique among groundwater systems because of variable permeability and flow-path organization changes resulting from dissolution processes. Over time, changes in flow-path connectivity complicate interpretations of conduit network evolution in karst hydrogeology. Natural and artificial tracer techniques have long provided critical information for protecting karst aquifers and understanding the potential impacts on ecosystems and human populations. Conventional tracer methods are useful in karst hydrogeologic studies for delineating flow paths and defining recharge, storage, and discharge properties. However, these methods only provide snapshots of the current conditions and do not provide sufficient information to understand the changes in interconnection or larger-scale evolution of flow paths in the aquifer over time. With advances in population genetics, it is possible to assess population connectivity, which may provide greater insights into complex groundwater flow paths. To assess this potential, we combined the more traditional approaches collected in this and associated studies, including artificial (dye) and natural (geochemistry, isotopes, and discharge) tracers, with the population genetic data of a groundwater crustacean to determine whether these data can provide insights into seasonal or longer changes in connections between conduits. The data collected included dye trace, hydrographs, geochemistry, and asellid isopod (Caecidotea bicrenenta) population genetics in Fern Cave, AL, USA, a 25 km-long cave system. Combined, these data show the connections between two separate flow paths during flood events as the downstream populations of isopods belonging to the same subpopulation were measured in both systems. Additionally, the sub-populations found in higher elevations of the cave suggest a highly interconnected unsaturated zone that allows for genetic movement in the vadose zone. Although upstream populations show some similarities in genetics, hydrologic barriers, in the form of large waterfalls, likely separate populations within the same stream.

 Artículos similares

       
 
Reza Aghlmand and Ali Abbasi    
Increasing water demands, especially in arid and semi-arid regions, continuously exacerbate groundwater resources as the only reliable water resources in these regions. Groundwater numerical modeling can be considered as an effective tool for sustainable... ver más
Revista: Water

 
Chunggil Jung, Gayeong Lee and Jongyoon Park    
Anthropogenic development can strongly influence natural river processes, leading to environmental changes that negatively affect important habitats and biodiversity and consequently reduce economically important natural resources. This study investigate... ver más
Revista: Water

 
Jingshi Liu, Guligena Halimulati, Yuting Liu, Jianxin Mu and Namaiti Tuoheti    
The climatic warming-induced shrinking of permafrost currently encompasses 65% of alpine areas in North China, where a large population relies on its water and land resources. With increasing recognition of the economic and ecological impacts of permafro... ver más
Revista: Water

 
Aaron A. Akin, Gia Nguyen and Aleksey Y. Sheshukov    
Soil erosion by water on agricultural hillslopes leads to numerous environmental problems including reservoir sedimentation, loss of agricultural land, declines in drinking water quality, and requires deep understanding of underlying physical processes f... ver más
Revista: Water

 
Bicheng Zhou, Anatoly V. Brouchkov and Jiabo Hu    
Frost heaving in soils is a primary cause of engineering failures in cold regions. Although extensive experimental and numerical research has focused on the deformation caused by frost heaving, there is a notable lack of numerical investigations into the... ver más
Revista: Water