Inicio  /  Water  /  Vol: 16 Par: 1 (2024)  /  Artículo
ARTÍCULO
TITULO

A Laboratory Study of the Role of Nature-Based Solutions in Improving Flash Flooding Resilience in Hilly Terrains

Shees Ur Rehman    
Afzal Ahmed    
Gordon Gilja    
Manousos Valyrakis    
Abdul Razzaq Ghumman    
Ghufran Ahmed Pasha and Rashid Farooq    

Resumen

Nature-based solutions (NBSs) always provide optimal opportunities for researchers and policymakers to develop sustainable and long-term solutions for mitigating the impacts of flooding. Computing the hydrological process in hilly areas is complex compared to plain areas. This study used a laboratory-scaled hillslope model to study rainfall-runoff responses considering the natural hillslope conditions prevailing in hill torrents creating flash floods. The objective of this study was to estimate the impact of nature-based solutions on time-to-peak for flash flooding events on hilly terrains under different scenarios. Many factors decide the peak of runoff generation due to rainfall, like land use conditions, e.g., soil porosity, vegetation cover, rainfall intensity, and terrain slope. To reduce these complexities, the model was designed with thermopore sheets made of impermeable material. A hillslope model using NBS was designed to evaluate flood hydrograph attenuation to minimize the peak discharge (Qp) and increase time-to-peak (Tp) under varying rainfall, land cover, and drainage channel slope conditions. A rainfall simulator was used to analyze the formation of hydrographs for different conditions, e.g., from barren to vegetation under three different slopes (S0, S1, S2) and three rainfall intensities (P1, P2, P3). Vegetation conditions used were no vegetation, rigid vegetation, flexible vegetation, and the combination of both rigid and flexible vegetation. The purpose of using all these conditions was to determine their mitigation effects on flash flooding. This experimental analysis shows that the most suitable case to attenuate a flood hydrograph was the mixed vegetation condition, which can reduce the peak discharge by 27% to 39% under different channel slopes. The mixed vegetation condition showed an increase of 49% in time-to-peak (Tp) compared to the no vegetation condition. Additionally, under P1 rainfall and a bed slope of 0°, it reduced the peak discharge by up to 35% in the simulated flood and effectively minimized its potentially destructive impacts.

 Artículos similares

       
 
Xuanshuo Shi, Zhongfeng Qiu, Yunjian Hu, Dongzhi Zhao, Aibo Zhao, Hui Lin, Yating Zhan, Yu Wang and Yuanzhi Zhang    
Remote sensing technology plays a crucial role in the rapid and wide-scale monitoring of water quality, which is of great significance for water pollution prevention and control. In this study, the downstream and nearshore areas of the Huaihe River Basin... ver más
Revista: Water

 
Wei Chen, Yishuai Tian, Yanhua Wang, Hang Yan and Yong Wang    
As the size and complexity of cities around the world increase, various types of urban problems are emerging. These problems are caused by multiple factors that have complex relationships with each other. Addressing a single cause blindly may result in a... ver más
Revista: Buildings

 
Anas A. Makki and Ammar Y. Alqahtani    
This study analyzes the barriers to developing smart cities (SCs) using the decision-making trial and evaluation laboratory (DEMATEL) approach. The primary objective is to identify, classify, and assess the main barriers hindering the progress of SCs. Th... ver más
Revista: Urban Science

 
Sachin Gowda, Vaishakh Kunjar, Aakash Gupta, Govindaswamy Kavitha, Bishnu Kant Shukla and Parveen Sihag    
In the realm of urban geotechnical infrastructure development, accurate estimation of the California Bearing Ratio (CBR), a key indicator of the strength of unbound granular material and subgrade soil, is paramount for pavement design. Traditional labora... ver más
Revista: Urban Science

 
Ismail Fathy, Gamal M. Abdel-Aal, Maha Rashad Fahmy, Amira Fathy, Martina Zelenakova, Hany F. Abd-ElHamid, Jakub Racek and Ahmed Moustafa A. Moussa    
Urban flooding is a problem faced by most countries because of climate change. Without storm drainage systems, negative impacts may occur, such as traffic problems and increasing groundwater levels, especially in lowlands. The implementation of storm dra... ver más
Revista: Hydrology