ARTÍCULO
TITULO

Array-Designed Triboelectric Nanogenerator for Healthcare Diagnostics: Current Progress and Future Perspectives

Zequan Zhao    
Qiliang Zhu    
Yifei Wang    
Muhammad Shoaib    
Xia Cao and Ning Wang    

Resumen

Array-designed triboelectric nanogenerators (AD-TENGs) have firmly established themselves as state-of-the-art technologies for adeptly converting mechanical interactions into electrical signals. Central to the AD-TENG?s prowess is its inherent modularity and the multifaceted, grid-like design that pave the way to robust and adaptable detection platforms for wearables and real-time health monitoring systems. In this review, we aim to elucidate the quintessential role of array design in AD-TENGs for healthcare detection, emphasizing its ability to heighten sensitivity, spatial resolution, and dynamic monitoring while ensuring redundancy and simultaneous multi-detection. We begin from the fundamental aspects, such as working principles and design basis, then venture into methodologies for optimizing AD-TENGs that ensure the capture of intricate physiological changes, from nuanced muscle movements to sensitive electronic skin. After this, our exploration extends to the possible cutting-edge electronic systems that are built with specific advantages in filtering noise, magnifying signal-to-noise ratios, and interpreting complex real-time datasets on the basis of AD-TENGs. Culminating our discourse, we highlight the challenges and prospective pathways in the evolution of array-designed AD-TENGs, stressing the necessity to refine their sensitivity, adaptability, and reliability to perfectly align with the exacting demands of contemporary healthcare diagnostics.