Inicio  /  Agriculture  /  Vol: 14 Par: 3 (2024)  /  Artículo
ARTÍCULO
TITULO

Design and Performance Analysis of a Sunflower Cutting Table Based on the Principle of Manual Disk Pick-Up

Bin Li    
Xiaolong Gao    
Xuegeng Chen    
Yang Liu    
Shiguo Wang and Yuncheng Dong    

Resumen

To solve the problems associated with the poor harvesting ability of existing sunflower harvester cutting tables, and high seed drop rates, we designed a sunflower cutting table that can greatly improve the operational performance of sunflower combine harvesters. In this paper, we introduce the structure and principle of the whole machine and select the key parameters of the cutting table with the goal of adapting to a variety of planting modes in Xinjiang, China. Since the harvesting of sunflower in the wrong row easily causes the sunflower stalks to break, ADAMS (Version: 2020) simulation experiments were carried out to investigate the effects of the forward speed of the machine, the height of the sunflower insertion disk, and the angle of inclination of the harvest divider on the offset angle of the sunflower. With the goal of reducing the offset angle of the stalks in the forward direction of the harvest divider and reducing the size of the cutting table, the harvest divider inclination angle was chosen to be 45°; by using Design-Expert V13.0.15 software, a three-factor, three-level field test was carried out to determine the optimal parameter combinations that resulted in the minimum seed loss rate and the maximum success rate of the disk picking. Moreover, a validation test was conducted. The results show that when the forward speed is set to 0.62 m/s, the lifting speed of the pick-up disk device is set to 0.42 m/s, and the height of the inserted disk is set to 1000 mm, the relative errors between the theoretical values of the disk-picking success rate of the cutting table and the seed loss rate and the field test values are 6.5% and 1.3%, respectively. The results of the present study can provide a reference for improving the performance of sunflower harvester cutting tables and for the mechanical harvesting of inserted disk sunflowers.

 Artículos similares

       
 
Josefa María Navarro and Asunción Morte    
In addressing the agricultural challenges posed by climate change, the use of biofertilizers, derived from living organisms, promotes environmentally friendly crop cultivation, and represents an adaptive strategy for sustainable agriculture in the face o... ver más
Revista: Agronomy

 
Ximei Wei, Meng Wang, Hongwen Zhang, Lei Wang, Xintian Du, Lixin Chen and Shaohua Zhi    
Machine-harvested seed cotton was taken as the research object to further clarify its creep performance, minimize its power consumption during the loading process, and obtain a better loading method. The uniaxial compression creep test was carried out us... ver más
Revista: Agriculture

 
Araceli Peña-Fernández, Manuel A. Colón-Reynoso and Pilar Mazuela    
Greenhouses are instrumental in the advancement of regions globally. The geometric arrangement of these structures plays a pivotal role in governing sunlight distribution, facilitating ventilation, and managing condensation. The roof?s shape significantl... ver más
Revista: Agriculture

 
Zhaoyang Guo, Caiyun Lu, Jin He, Qingjie Wang, Hang Li and Chengkun Zhai    
Aiming to solve the problems of excessive straw residue and large soil loss in the seeding belt of the straw row-sorting operation when the full volume of straw is crushed and returned to the field in the northeastern region of China, an active spiral pu... ver más
Revista: Agriculture

 
Jinwu Wang, Zhe Liu, Mao Yang, Wenqi Zhou, Han Tang, Long Qi, Qi Wang and Yi-Jia Wang    
Weeds compete with rice for sunlight and nutrients and are prone to harboring pathogens, leading to reduced rice yields. Addressing the issues of low weeding efficiency and weed mortality rates in existing inter-row weeding devices, the study proposes th... ver más
Revista: Agriculture