Inicio  /  Infrastructures  /  Vol: 6 Par: 12 (2021)  /  Artículo
ARTÍCULO
TITULO

A Hybrid Surrogate Model for the Prediction of Solitary Wave Forces on the Coastal Bridge Decks

Jinsheng Wang    
Shihao Xue and Guoji Xu    

Resumen

To facilitate the establishment of the probabilistic model for quantifying the vulnerability of coastal bridges to natural hazards and support the associated risk assessment and mitigation activities, it is imperative to develop an accurate and efficient method for wave forces prediction. With the fast development of computer science, surrogate modeling techniques have been commonly used as an effective alternative to computational fluid dynamics for the establishment of a predictive model in coastal engineering. In this paper, a hybrid surrogate model is proposed for the efficient and accurate prediction of the solitary wave forces acting on coastal bridge decks. The underlying idea of the proposed method is to enhance the prediction capability of the constructed model by introducing an additional surrogate to correct the errors made by the main predictor. Specifically, the regression-type polynomial chaos expansion (PCE) is employed as the main predictor to capture the global feature of the computational model, whereas the interpolation-type Kriging is adopted to learn the local variations of the prediction error from the PCE. An engineering case is employed to validate the effectiveness of the hybrid model, and it is observed that the prediction performance (in terms of residual mean square error and correlation coefficient) of the hybrid model is superior to the optimal PCE and artificial neural network (ANN) for both horizontal and vertical wave forces, albeit the maximum PCE degrees used in the hybrid model are lower than the optimal degrees identified in the pure PCE model. Moreover, the proposed hybrid model also enables the extraction of explicit predictive equations for the parameters of interest. It is expected that the hybrid model could be extended to more complex wave conditions and structural shapes to facilitate the life-cycle structural design and analysis of coastal bridges.

 Artículos similares

       
 
Tiejiang Yuan, Nan Yang, Wei Zhang, Wenping Cao, Ning Xing, Zheng Tan and Guofeng Li    
This paper introduces a new rotor design for the easy insertion and removal of rotor windings. The shape of the rotor is optimized based on a surrogate method in order to achieve low power loss under the maximum power output. The synchronous machine with... ver más
Revista: Energies

 
Atthaphon Ariyarit and Masahiro Kanazaki    
In this study, efficient global optimization (EGO) with a multi-fidelity hybrid surrogate model for multi-objective optimization is proposed to solve multi-objective real-world design problems. In the proposed approach, a design exploration is carried ou... ver más
Revista: Applied Sciences