ARTÍCULO
TITULO

Analysis of Sea Ice Timing and Navigability along the Arctic Northeast Passage from 2000 to 2019

Min Ji    
Guochong Liu    
Yawen He    
Ying Li and Ting Li    

Resumen

The ablation of Arctic sea ice makes seasonal navigation possible in the Arctic region, which accounted for the apparent influence of sea ice concentration in the navigation of the Arctic route. This paper uses Arctic sea ice concentration daily data from January 1, 2000, to December 31, 2019. We used a sea ice concentration threshold value of 40% to define the time window for navigating through the Arctic Northeast Passage (NEP). In addition, for the year when the navigation time of the NEP is relatively abnormal, we combined with wind field, temperature, temperature anomaly, sea ice age and sea ice movement data to analyze the sea ice conditions of the NEP and obtain the main factors affecting the navigation of the NEP. The results reveal the following: (1) The sea ice concentration of the NEP varies greatly seasonally. The best month for navigation is September. The opening time of the NEP varies from late July to early September, the end of navigation is concentrated in mid-October, and the navigation time is basically maintained at more than 30 days. (2) The NEP was not navigable in 2000, 2001, 2003 and 2004. The main factors are the high amount of multi-year ice, low temperature and the wind field blowing towards the Vilkitsky Strait and sea ice movement. The navigation time in 2012, 2015 and 2019 was longer, and the driving factors were the high temperature, weak wind and low amount of one-year ice. The navigation time in 2003, 2007 and 2013 was shorter, and the influencing factors were the strong wind field blowing towards the Vilkitsky Strait. (3) The key navigable areas of the NEP are the central part of the East Siberian Sea and the Vilkitsky Strait, and the Vilkitsky Strait has a greater impact on the NEP than the central part of the East Siberian Sea. The main reason for the high concentration of sea ice in the central part of the East Siberian Sea (2000 and 2001) was the large amount of multi-year ice. The main reason for the high concentration of sea ice in the Vilkitsky Strait (2000 to 2004 and 2007, 2013) was the strong offshore wind in summer, all of which were above 4 m s-1, pushing the sea ice near the Vilkitsky Strait to accumulate in the strait, thus affecting the opening of the NEP.

 Artículos similares

       
 
Namitha Viona Pais, James O?Donnell and Nalini Ravishanker    
The design strategies for flood risk reduction in coastal towns must be informed by the likelihood of flooding resulting from both precipitation and coastal storm surge. This paper discusses various bivariate extreme value methods to investigate the join... ver más

 
Kailong Feng, Weilin Zhu, Xiaowei Fu, Kai Zhong, Shijie Zhao, Weizhen Chen, Zengyuan Zhou and Lichen Hu    
The Qiantang Sag, as one of the East China Sea Shelf Basin?s sags with thick residual Mesozoic strata, has long lacked comprehensive foundational sedimentary research, significantly impeding the understanding of the region?s resource potential and geolog... ver más

 
Uxia Garcia-Luis, Alejandro M. Gomez-San-Juan, Fermin Navarro-Medina, Carlos Ulloa-Sande, Alfonso Yñigo-Rivera and Alba Eva Peláez-Santos    
The integration of uncertainty analysis methodologies allows for improving design efficiency, particularly in the context of instruments that demand precise pointing accuracy, such as space telescopes. Focusing on the VINIS Earth observation telescope de... ver más
Revista: Aerospace

 
Nicolás Molina-Padrón, Francisco Cabrera-Almeida, Víctor Araña-Pulido and Beatriz Tovar    
Every year, more than 1500 containers are lost around the world. These accidents are increasingly more common due to the boom of the shipping industry, presenting serious consequences for marine ecosystems and maritime navigation. This problem has alerte... ver más

 
Bon-Ho Gu, Seung-Buhm Woo, Jae-Il Kwon, Sung-Hwan Park and Nam-Hoon Kim    
This study presents a comprehensive analysis of contaminant transport in estuarine environments, focusing on the impact of tidal creeks and flats. The research employs advanced hydrodynamic models with irregular grid systems and conducts a detailed resid... ver más
Revista: Water