Inicio  /  Applied Sciences  /  Vol: 11 Par: 4 (2021)  /  Artículo
ARTÍCULO
TITULO

Replacement of Natural Sand with Expanded Vermiculite in Fly Ash-Based Geopolymer Mortars

Osman Gencel    
Aliakbar Gholampour    
Hayrettin Tokay and Togay Ozbakkaloglu    

Resumen

Increasing the thermal insulation of building components to reduce the thermal energy loss of buildings has received significant attention. Owing to its porous structure, using expanded vermiculite as an alternative to natural river sand in the development of building materials would result in improvement of the thermal performance of buildings. This study investigates the properties of fly ash (FA)-based geopolymer mortars prepared with expanded vermiculite. The main aim of this study was to produce geopolymer mortar with lower thermal conductivity than conventional mortar for thermal insulation applications in buildings. A total of twelve batches of geopolymers were prepared for evaluating their different properties. The obtained results show that, at a given FA and expanded vermiculite content, the geopolymers prepared with a 10 molar NaOH solution exhibited a higher flowability, water absorption and porosity, as well as a lower dry unit weight, compressive strength, ultrasound pulse velocity and thermal conductivity compared with those prepared with a 15 molar NaOH solution. As is also shown, the geopolymers containing expanded vermiculite (15%) developed a lower flowability (~6%), dry unit weight (~6%), compressive strength (~7%), ultrasound pulse velocity (~6%) and thermal conductivity (~18%), as well as a higher apparent porosity (~6%) and water absorption (~9%) compared with those without expanded vermiculite at a given FA content and NaOH concentration. The findings of this study suggest that incorporating expanded vermiculite in FA-based geopolymer mortar can provide eco-friendly and lightweight building composites with improved sound and thermal insulation properties, contributing toward the reduction of the environmental effects of waste materials and conservation of natural sand.

 Artículos similares

       
 
Cristian Andrei Murgu and Geta Rî?noveanu    
Riparian predatory arthropods represent one of the main trophic links between lotic and terrestrial ecosystems along riverine landscapes. The use of the trait-based approach promises to enhance our understanding of how these predatory communities interac... ver más
Revista: Water

 
Hu Liu, Meng Li and Yijun Shen    
As oil and natural gas production continue to go deeper into the ocean, the flexible riser, as a connection to the surface of the marine oil and gas channel, will confront greater problems in its practical application. Composite materials are being consi... ver más

 
Shan Liu, Fengxia Han, Shiqi Zheng, Songpu Gao and Guoxing Zhang    
Concrete that self-compacts is frequently utilized in engineering construction. Recycled coarse aggregate self-compacting concrete (RCASCC) is made by partially substituting recycled coarse aggregates (RCA) for natural coarse aggregates in order to conse... ver más
Revista: Applied Sciences

 
Daniel Mulat Nega, Begashaw Worku Yifru, Woubishet Zewdu Taffese, Yalew Kassa Ayele and Mitiku Damtie Yehualaw    
The purpose of this study is to examine the effects of partially replacing cement with a blend of marble waste powder (MWP) and granite waste powder (GWP) in mortar, with the goal of reducing the environmental harm caused by cement. The investigation inc... ver más
Revista: Applied Sciences

 
Ali Kheirbek, Ali Ibrahim, Majed Asaad and George Wardeh    
A huge volume of waste is generated by natural and human-made disasters and by rapid urbanization that leads to the demolition of structures reaching the end of their service life. Using recycled aggregates in concrete producing reduces environmental pol... ver más
Revista: Infrastructures