ARTÍCULO
TITULO

A Fault-Tolerant Control Method Based on Reconfiguration SPWM Signal for Cascaded Multilevel IGBT-Based Propulsion in Electric Ships

Fan Zhang    
Zhiwei Zhang    
Zhonglin Zhang    
Tianzhen Wang    
Jingang Han and Yassine Amirat    

Resumen

Electric ships have been developed in recent years to reduce greenhouse gas emissions. In this system, inverters are the key equipment for the permanent-magnet synchronous motor (PMSM) drive system. The cascaded insulated-gated bipolar transistor (IGBT)-based H-bridge inverter is one of the most attractive multilevel topologies for modern electric ship applications. Usually, the fault-tolerant control strategy is designed to keep the ship in operation for a certain period. However, the fault-tolerant control strategy with hardware redundancy is expensive and slow in response. In addition, after fault-tolerant control, the ship?s PMSM may experience shock and overheating, and IGBT life is reduced due to uneven switching frequency distribution. Therefore, a stratified reconfiguration carrier disposition Sinusoidal Pulse Width Modulation (SPWM) fault-tolerant control strategy is proposed. The proposed strategy can achieve fault tolerance without any extra hardware. A reconfiguration carrier is applied to improve the fundamental amplitude of inverter output voltage to maintain the operation of the ship?s PMSM. In addition, the available states of faulty H-bridge are fully used to contribute to the output. These can improve the life of IGBTs by reducing and balancing the power loss of each H-bridge. The principles of the proposed strategy are described in detail in this study. Taking a cascaded H-bridge seven-level inverter as an example, simulation and experimental results verify that the proposed strategy, in general, has a potential future application on electric ships.

 Artículos similares

       
 
Xiaoli Pan, Zheping Yan, Heming Jia, Jiajia Zhou and Lidong Yue    
Formation control, which is a core problem in multi-autonomous underwater vehicle (AUV) systems, plays an important role in realizing safe and accurate cooperation of multi-AUV systems. This paper provides a study on fault-tolerant formation control for ... ver más

 
Wanlu Zhu, Tianwen Gu, Jie Wu and Zhengzhuo Liang    
In instances where vessels encounter impacts or other factors leading to communication impairments, the status of electrical equipment becomes inaccessible through standard communication lines for the controllers. Consequently, the shipboard power system... ver más

 
Junfeng Wu, Huan Wang, Shanshan Li and Shuguang Liu    
This paper investigates the distance-based formation and cooperative path-following control problems for multiple fixed-wing unmanned aerial vehicles (UAVs). In this study, we design the distance-based formation control structure to achieve the virtual l... ver más
Revista: Aerospace

 
Yaping Zhu, Qiang Zhang, Yang Liu, Yancai Hu and Sihang Zhang    
A new control algorithm was designed to solve the problems of actuator physical failure, remote network attack, and sudden change in trajectory curvature when a port?s artificial intelligence-based transportation robots track transportation in a freight ... ver más

 
Kamila Jankowska, Mateusz Dybkowski, Viktor Petro and Karol Kyslan    
The proposed solution belongs to the group of fault-tolerant control algorithms that are used in industrial drives. Systems of this type are particularly applicable in industries where an increased level of safety is required, such as electric vehicle dr... ver más
Revista: Applied Sciences