Inicio  /  Algorithms  /  Vol: 17 Par: 4 (2024)  /  Artículo
ARTÍCULO
TITULO

A Computational Platform for Automatic Signal Processing for Bender Element Sensors

Ionut Dragos Moldovan    
Abdalla Almukashfi and António Gomes Correia    

Resumen

The small strain shear modulus is an important characteristic of geomaterials that can be measured experimentally using piezoelectric sensors (bender elements). However, most conventional signal interpretation techniques are based on the visual observation of the output signal and therefore inherently subjective. Objective techniques also exist, like the cross-correlation of the input and output signals, but they lack physical insight, as they rely on the (incorrect) assumption that input and output signals are similar. This paper presents GeoHyTE, the first objective and physically consistent toolbox for the automatic processing of the output signal of bender element sensors. GeoHyTE updates a finite element model of the experiment, iteratively searching for the small strain shear modulus that maximises the correlation between the experimental and numerical output signals. The method is objective, as the results do not depend on the experience of the user, and physically consistent, as the wave propagation process is modelled in full and signals of the same nature (output) are correlated. Moreover, GeoHyTE is nearly insensitive to grossly erroneous input by the user, both in terms of the starting point of the iterative maximisation process and refinement of the finite element model. The results obtained with GeoHyTE are validated against benchmark measurements reported in the literature and experimental data obtained by the authors. A detailed statistical analysis of the results obtained with GeoHyTE and conventional interpretation techniques is also presented.

 Artículos similares

       
 
Juan Luis Pérez-Ruiz, Yu Tang, Igor Loboda and Luis Angel Miró-Zárate    
In the field of aircraft engine diagnostics, many advanced algorithms have been proposed over the last few years. However, there is still wide room for improvement, especially in the development of more integrated and complete engine health management sy... ver más
Revista: Aerospace

 
Shaahin Angizi, Naima Ahmed Fahmi, Deniz Najafi, Wei Zhang and Deliang Fan    
In this work, we present an efficient Processing in MRAM-Accelerated De Bruijn Graph-based DNA Assembly platform, named PANDA, based on an optimized and hardware-friendly genome assembly algorithm. PANDA is able to assemble large-scale DNA sequence datas... ver más

 
Andrew Chamberlin, Andrew Gerber, Mason Palmer, Tim Goodale, Noel Daniel Gundi, Koushik Chakraborty and Sanghamitra Roy    
Artificial Intelligence (AI) hardware accelerators have seen tremendous developments in recent years due to the rapid growth of AI in multiple fields. Many such accelerators comprise a Systolic Multiply?Accumulate Array (SMA) as its computational brain. ... ver más

 
Yoon-Jin Ha, Kyong-Hwan Kim and Ji-Yong Park    
In this study, a numerical simulation was conducted to investigate the non-linear physical phenomena of a tension leg platform (TLP) of a 15-MW-class floating offshore wind turbine (FOWT). Computational fluid dynamics was employed as the numerical tool, ... ver más

 
Qi Deng and Feng Zeng    
In big cities, there are more and more parking lots and charging piles for electric vehicles, and the resources of parking and charging vehicles can be aggregated to provide strong computing power for vehicular edge computing (VEC). In this paper, we pro... ver más
Revista: Applied Sciences