Inicio  /  Applied Sciences  /  Vol: 12 Par: 17 (2022)  /  Artículo
ARTÍCULO
TITULO

Enhancement of In-Plane Seismic Full Waveform Inversion with CPU and GPU Parallelization

Min Bahadur Basnet    
Mohammad Anas    
Zarghaam Haider Rizvi    
Asmer Hamid Ali    
Mohammad Zain    
Giovanni Cascante and Frank Wuttke    

Resumen

Full waveform inversion is a widely used technique to estimate the subsurface parameters with the help of seismic measurements on the surface. Due to the amount of data, model size and non-linear iterative procedures, the numerical computation of Full Waveform Inversion are computationally intensive and time-consuming. This paper addresses the parallel computation of seismic full waveform inversion with Graphical Processing Units. Seismic full-waveform inversion of in-plane wave propagation in the finite difference method is presented here. The stress velocity formulation of the wave equation in the time domain is used. A four nodded staggered grid finite-difference method is applied to solve the equation, and the perfectly matched layers are considered to satisfy Sommerfeld?s radiation condition at infinity. The gradient descent method with conjugate gradient method is used for adjoined modelling in full-waveform inversion. The host code is written in C++, and parallel computation codes are written in CUDA C. The computational time and performance gained from CUDA C and OpenMP parallel computation in different hardware are compared to the serial code. The performance improvement is enhanced with increased model dimensions and remains almost constant after a certain threshold. A GPU performance gain of up to 90 times is obtained compared to the serial code.

 Artículos similares

       
 
Rongke Wei, Haodong Pei, Dongjie Wu, Changwen Zeng, Xin Ai and Huixian Duan    
The task of 3D reconstruction of urban targets holds pivotal importance for various applications, including autonomous driving, digital twin technology, and urban planning and development. The intricate nature of urban landscapes presents substantial cha... ver más
Revista: Applied Sciences

 
Suhee Jo, Ryeonggu Kwon and Gihwon Kwon    
GitHub serves as a platform for collaborative software development, where contributors engage, evolve projects, and shape the community. This study presents a novel approach to analyzing GitHub activity that departs from traditional methods. Using Discre... ver más
Revista: Applied Sciences

 
Yu Chen, Jianwan Ding, Yu Chen and Dong Yan    
The introduction of a dynamic model in robot trajectory tracking control design can significantly improve its trajectory tracking accuracy, but there are many uncertainties in the robot dynamic model which can be dealt with through robust control and ada... ver más
Revista: Applied Sciences

 
Shangcong Zhang, Yongfang Li, Xuefei Chen, Ruyi Zhou, Ziran Wu and Taha Zarhmouti    
Fire pumps are the key components of water supply in a firefighting system. At present, there is a lack of fire water pump testing methods that intelligently detect faulty states. Existing testing approaches require manual operation, which leads to low e... ver más
Revista: Water

 
Shuo Liu, Bohan Feng, Youyi Bi and Dan Yu    
Mobile robots play an important role in smart factories, though efficient task assignment and path planning for these robots still present challenges. In this paper, we propose an integrated task- and path-planning approach with precedence constrains in ... ver más
Revista: Applied Sciences