Inicio  /  Infrastructures  /  Vol: 7 Par: 3 (2022)  /  Artículo
ARTÍCULO
TITULO

Discrete Element Bonded-Block Models for Detailed Analysis of Masonry

José V. Lemos and Vasilis Sarhosis    

Resumen

A detailed modelling approach to represent masonry at the meso-scale is proposed, based on the discrete element method, considering the nonlinear behavior of the joints and the units. The fracture of units is represented by the bonded-block concept, in which a random network of potential cracks is created, allowing the progressive development of failure mechanisms. For simplicity, only the 2D case is presented, but the extension to 3D is straightforward. A key component of the proposed model is a framework for a joint or interface constitutive model, including the post-peak softening range, taking into account the experimental fracture energies. In this model, the softening curves in tension or shear are defined by piecewise linear segments, calibrated to reproduce the most common masonry constitutive models. The essential issues involved in the application of bonded-block models to masonry are examined, namely the block shape, either Voronoi polygons or triangles; size; deformability; and the influence of the main constitutive parameters. Uniaxial compression tests are analyzed in detail. The simulation of a well-known experiment of a brick panel under shear shows the good performance of the proposed approach. The investigation results demonstrate the model?s capabilities and provide guidelines for its application.

 Artículos similares

       
 
Nuno Monteiro Azevedo, Maria Luísa Braga Farinha and Sérgio Oliveira    
To obtain predictions closer to concrete behaviour, it is necessary to employ a particle model (PM) that considers contact softening. A bilinear softening contact model (BL) has been adopted in PM studies. Several limitations in PM predictions have been ... ver más
Revista: Buildings

 
Weihan Huang, Ke Gao and Yu Feng    
Predicting earthquakes through reasonable methods can significantly reduce the damage caused by secondary disasters such as tsunamis. Recently, machine learning (ML) approaches have been employed to predict laboratory earthquakes using stick-slip dynamic... ver más

 
Bora Pulatsu, Rhea Wilson, Jose V. Lemos and Neboj?a Mojsilovic    
Unreinforced masonry (URM) walls are common load-bearing structural elements in most existing buildings, consisting of masonry units (bricks) and mortar joints. They indicate a highly nonlinear and complex behaviour when subjected to combined compression... ver más
Revista: Infrastructures

 
Marko Motaln and Tone Lerher    
Numerical simulations play a vital role in the modern engineering industry, especially when faced with interconnected challenges such as particle interactions and the structural integrity of conveyor systems. This article focuses on the handling of mater... ver más
Revista: Applied Sciences

 
Zehua Zhang, Wenle Gao and Yuming Kou    
Micro-parameter calibration is essential in constructing an accurate and reliable numerical model of particle discrete element PFC3D 6.0 software. Micro-parameter calibration is mainly accomplished according to the macro-parameters obtained from static o... ver más
Revista: Applied Sciences