ARTÍCULO
TITULO

Fatigue Life Assessment in the Typical Structure of Large Container Vessels Based on Fracture Mechanics

Jinfeng Liu    
Guoqing Feng    
Jiaying Wang    
Huilong Ren    
Wei Song and Panpan Lin    

Resumen

Welding defects are known to cause crack propagation and reduce structural fatigue performance. Based on the Paris theory of fracture mechanics, research is conducted on evaluation methods for analyzing fatigue crack propagation by adopting random loads with long-term distribution that follows the Weibull distribution for the stress ranges of fatigue loads. This approach is combined with the corrective stress intensity factor (SIF) equation and the method for calculating the reference stress and failure criterion. A large container ship is selected for a simulation, and fatigue crack propagation analysis is conducted on typical critical locations. A detailed comparison of the forecasted fatigue life is carried out between fracture mechanics theory and the S-N curve. The results indicate that the fatigue life values obtained using the two methods are of the same magnitude. In general, for the welded structure, the fatigue life value obtained via the fracture mechanics method is shorter than that obtained via the S-N curve method, while, for the free edge of the structure and the unwelded structure, the predicted fatigue life value is closer than that predicted via the S-N curve method. Moreover, the influence of initial crack defects on the fatigue life is investigated, and the results show that the depth of the initial crack will greatly affect the fatigue life of the target ship in typical locations, but the influence of the shape ratio on the fatigue life is limited. Therefore, in the actual ship construction process, controlling the initial crack depth of components is effective for limiting crack propagation and improving fatigue life. The above conclusions and suggestions can serve as a reference for the structural design and fatigue life evaluation of large container ships.

 Artículos similares

       
 
Siyu Wang and Jie Jia    
The large-span bridge is highly sensitive to temperature and wind loads. Therefore, it is essential to study the bridge?s fatigue life under the combined effects of temperature and static wind loads. This study focuses on the main bridge of Qiao Jia-fan ... ver más
Revista: Applied Sciences

 
Young-Cheol Kim, Dong-Hyeop Kim and Sang-Woo Kim    
To achieve the commercialization of electric vertical takeoff and landing (eVTOL) aircrafts, which have recently garnered attention as the next-generation means of transportation, objective certification based on rigorous procedures is essential. With th... ver más
Revista: Aerospace

 
Zhitao Guo, Xudong Zhao, Qingfen Ma, Jingru Li and Zhongye Wu    
As a key component connecting a floating wind turbine with static sea cables, dynamic cables undergo significant tensile and bending loads caused by hydrostatic pressure, self-weight, waves, and ocean currents during service, which can lead to fatigue fa... ver más

 
Junrong Wang, Chunlei He, Dianfu Fu, Kuang He and Junfeng Du    
Fatigue failure caused by frequent tension and bending loads is a crucial safety concern for mooring chains used on floating structures in the oil and gas industry. The bending effect for a chain?s fatigue is usually not considered by existing fatigue an... ver más

 
Ali Reza Ghanizadeh, Mandana Salehi, Anna Mamou, Evangelos I. Koutras, Farhang Jalali and Panagiotis G. Asteris    
This paper investigates the effect of subgrade soil stabilization on the performance and life extension of flexible pavements. Several variables affecting soil stabilization were considered, including subgrade soil type (CL or CH), additive type and cont... ver más
Revista: Infrastructures