Inicio  /  Algorithms  /  Vol: 16 Par: 6 (2023)  /  Artículo
ARTÍCULO
TITULO

Improving Accuracy of Face Recognition in the Era of Mask-Wearing: An Evaluation of a Pareto-Optimized FaceNet Model with Data Preprocessing Techniques

Damilola Akingbesote    
Ying Zhan    
Rytis Maskeliunas and Robertas Dama?evicius    

Resumen

The paper presents an evaluation of a Pareto-optimized FaceNet model with data preprocessing techniques to improve the accuracy of face recognition in the era of mask-wearing. The COVID-19 pandemic has led to an increase in mask-wearing, which poses a challenge for face recognition systems. The proposed model uses Pareto optimization to balance accuracy and computation time, and data preprocessing techniques to address the issue of masked faces. The evaluation results demonstrate that the model achieves high accuracy on both masked and unmasked faces, outperforming existing models in the literature. The findings of this study have implications for improving the performance of face recognition systems in real-world scenarios where mask-wearing is prevalent. The results of this study show that the Pareto optimization allowed improving the overall accuracy over the 94% achieved by the original FaceNet variant, which also performed similarly to the ArcFace model during testing. Furthermore, a Pareto-optimized model no longer has a limitation of the model size and is much smaller and more efficient version than the original FaceNet and derivatives, helping to reduce its inference time and making it more practical for use in real-life applications.

 Artículos similares

       
 
Weihao Cao, Guangli Cheng, Bao Liu and Yangfan Cai    
The current time-domain solution methods for the wavefield equations of a single medium do not apply to the wavefield equations of shallow water seismic with a fluid?elastomer coupling. To solve this problem, based on the explicit central difference meth... ver más
Revista: Applied Sciences

 
Eyad K. Sayhood, Nisreen S. Mohammed, Salam J. Hilo and Salih S. Salih    
This paper presents comprehensive empirical equations to predict the shear strength capacity of reinforced concrete deep beams, with a focus on improving the accuracy of existing codes. Analyzing 198 deep beams imported from 15 existing investigations, t... ver más
Revista: Infrastructures

 
Min Li, Zhirui Cui and Tianyu Fan    
In order to further improve the accuracy of flood routing, this article uses the Variable Exponential Nonlinear Muskingum Model (VEP-NMM), combined with the Artificial Rabbit Optimization (ARO) algorithm for parameter calibration, to construct the ARO-VE... ver más
Revista: Water

 
Pengyun Chen, Zhiru Li, Guangqing Liu, Ziyi Wang, Jiayu Chen, Shangyao Shi, Jian Shen and Lizhou Li    
The positioning results of terrain matching in flat terrain areas will significantly deteriorate due to the influence of terrain nonlinearity and multibeam measurement noise. To tackle this problem, this study presents the Pulse-Coupled Neural Network (P... ver más

 
Tsuyoshi Ikehara and Naomasa Oshiro    
Okadaic acids (OAs) are causative agents of diarrhetic shellfish poisoning, produced by the dinoflagellates Dinophysis spp. and Prorocentrum spp. Microcystins (MCs) are cyclic heptapeptide hepatotoxins produced by some cyanobacteria genera, including Mic... ver más