Inicio  /  Applied Sciences  /  Vol: 13 Par: 9 (2023)  /  Artículo
ARTÍCULO
TITULO

Assessing the Efficacy of Coagulation (Al3+) and Chlorination in Water Treatment Plant Processes: Inactivating Chironomid Larvae for Improved Tap Water Quality

Haerul Hidayaturrahman    
Hyuk Jun Kwon    
Yumeng Bao    
Shaik Gouse Peera and Tae Gwan Lee    

Resumen

In response to the finding of chironomid larvae in tap water, South Korea?s water treatment system has stepped up water quality monitoring. However, due to the challenging nature of larval behavior, effective elimination remains difficult despite the use of various purification techniques such as coagulation, sedimentation, filtration, and disinfection. Based on it, the aim of this study is to evaluate the effectiveness of coagulation and chlorination in inactivating chironomid larvae and investigate their behavior. The coagulation experiment tested how the behavior of the larvae changed in water with a high turbidity level of ±100 mg/L and 2 mg/L Al3+ as a coagulant, compared to water with a lower turbidity level of ±30 mg/L and 1 mg/L of Al3+ as a coagulant. The larvae were exposed to various doses of chlorine (0.5?20 mg/L as Cl) in 500 mL beaker glasses. The behavioral activity of the larvae was observed at different time points for 5 days. It was found that chironomid larvae exhibit different responses to exposure to coagulant and chlorine, with coagulation causing the formation of flocs that cover the larval body as a protective measure. Conversely, exposure to chlorine causes a decrease in activity and growth, leading to the death of the larvae and subsequent melting. The results showed that the first instar larvae dead after 48 h of exposure to coagulation treatment, while the first instar larvae exposed to chlorination experienced mortality after a mere 5 min of exposure to 10?20 mg/L as Cl. The larvae can still grow and transform into pupae and adults, especially during the third and fourth instars, even after exposure to coagulant and chlorine with low dosage. These findings suggest that the floc generated during coagulation must be thoroughly cleaned, as it may contain larvae that can persist and develop further. Furthermore, the presence of larvae during the chlorination process highlights the need for alternative, more effective oxidants to be utilized in place of the conventional chlorine treatment.

 Artículos similares

       
 
Huawei Sun, Anran Ju, Wentian Chang, Jingfei Liu, Jiayi Liu and Hanbing Sun    
Assessing the safety of amphibious aircraft hinges significantly on two key factors: wave-added resistance and motion stability during takeoff and landing on water surfaces. To tackle this, we employed the Reynolds-averaged Navier?Stokes (RANS) equations... ver más

 
Katerina Vatitsi, Sofia Siachalou, Dionissis Latinopoulos, Ifigenia Kagalou, Christos S. Akratos and Giorgos Mallinis    
Freshwater ecosystems provide an array of provisioning, regulating/maintenance, and cultural ecosystem services. Despite their crucial role, freshwater ecosystems are exceptionally vulnerable due to changes driven by both natural and human factors. Water... ver más
Revista: Water

 
Majid Niazkar, Margherita Evangelisti, Cosimo Peruzzi, Andrea Galli, Marco Maglionico and Daniele Masseroni    
The first flush (FF) phenomenon is commonly associated with a relevant load of pollutants, raising concerns about water quality and environmental management in agro-urban areas. An FF event can potentially transport contaminated water into a receiving wa... ver más
Revista: Water

 
Yi Ouyang, Tao Feng, Han Feng, Xinghan Wang, Huayu Zhang and Xiaoxue Zhou    
Deformation monitoring plays a pivotal role in assessing dam safety. Interferometric Synthetic Aperture Radar (InSAR) has the advantage of obtaining an extensive range of deformation, regardless of weather conditions. The Datengxia Water Conservancy Hub ... ver más
Revista: Water

 
Naseer Muhammad Khan, Liqiang Ma, Muhammad Zaka Emad, Tariq Feroze, Qiangqiang Gao, Saad S. Alarifi, Li Sun, Sajjad Hussain and Hui Wang    
The brittleness index is one of the most integral parameters used in assessing rock bursts and catastrophic rock failures resulting from deep underground mining activities. Accurately predicting this parameter is crucial for effectively monitoring rock b... ver más
Revista: Water