ARTÍCULO
TITULO

Machine Learning Solutions for Offshore Wind Farms: A Review of Applications and Impacts

Masoud Masoumi    

Resumen

The continuous advancement within the offshore wind energy industry is propelled by the imperatives of renewable energy generation, climate change policies, and the zero-emission targets established by governments and communities. Increasing the dimensions of offshore wind turbines to augment energy production, enhancing the power generation efficiency of existing systems, mitigating the environmental impacts of these installations, venturing into deeper waters for turbine deployment in regions with optimal wind conditions, and the drive to develop floating offshore turbines stand out as significant challenges in the domains of development, installation, operation, and maintenance of these systems. This work specifically centers on providing a comprehensive review of the research undertaken to tackle several of these challenges using machine learning and artificial intelligence. These machine learning-based techniques have been effectively applied to structural health monitoring and maintenance, facilitating the more accurate identification of potential failures and enabling the implementation of precision maintenance strategies. Furthermore, machine learning has played a pivotal role in optimizing wind farm layouts, improving power production forecasting, and mitigating wake effects, thereby leading to heightened energy generation efficiency. Additionally, the integration of machine learning-driven control systems has showcased considerable potential for enhancing the operational strategies of offshore wind farms, thereby augmenting their overall performance and energy output. Climatic data prediction and environmental studies have also benefited from the predictive capabilities of machine learning, resulting in the optimization of power generation and the comprehensive assessment of environmental impacts. The scope of this review primarily includes published articles spanning from 2005 to March 2023.

 Artículos similares

       
 
Zhenzhen Di, Miao Chang, Peikun Guo, Yang Li and Yin Chang    
Most worldwide industrial wastewater, including in China, is still directly discharged to aquatic environments without adequate treatment. Because of a lack of data and few methods, the relationships between pollutants discharged in wastewater and those ... ver más
Revista: Water

 
Ognjen Radovic,Srdan Marinkovic,Jelena Radojicic    
Credit scoring attracts special attention of financial institutions. In recent years, deep learning methods have been particularly interesting. In this paper, we compare the performance of ensemble deep learning methods based on decision trees with the b... ver más

 
Pablo de Llano, Carlos Piñeiro, Manuel Rodríguez     Pág. pp. 163 - 198
This paper offers a comparative analysis of the effectiveness of eight popular forecasting methods: univariate, linear, discriminate and logit regression; recursive partitioning, rough sets, artificial neural networks, and DEA. Our goals are: clarify the... ver más

 
Hugo López-Fernández     Pág. 22 - 25
Mass spectrometry using matrix assisted laser desorption ionization coupled to time of flight analyzers (MALDI-TOF MS) has become popular during the last decade due to its high speed, sensitivity and robustness for detecting proteins and peptides. This a... ver más

 
Rejath Jose, Faiz Syed, Anvin Thomas and Milan Toma    
The advancement of machine learning in healthcare offers significant potential for enhancing disease prediction and management. This study harnesses the PyCaret library?a Python-based machine learning toolkit?to construct and refine predictive models for... ver más
Revista: Applied Sciences