Inicio  /  Water  /  Vol: 15 Par: 4 (2023)  /  Artículo
ARTÍCULO
TITULO

Vibration Characteristics of a Tubular Turbine Prototype at Different Heads with Considering Free Surface and Water Gravity

Yaping Zhao    
Yanrong Li    
Jianjun Feng    
Mengfan Dang    
Yajing Ren and Xingqi Luo    

Resumen

Tubular turbines are widely used in low water head and tidal power development due to their straight flow path, simple structure, and wide efficient area. However, the severe vibration during actual operation greatly affects the safe operation of the tubular turbine. This study performs a numerical calculation of the tubular turbine, which meets the actual machine conditions considering the free surface and water gravity; compares and analyzes the flow characteristics and pressure fluctuation spectrum characteristics in the tubular turbine under different water heads; and verifies the comparison with the actual machine test results to explore the vibration characteristics and vibration mechanism of the tubular turbine. Research results show that a large pressure difference is observed between the top and bottom of the runner chamber, and the runner needs to experience large periodic pressure fluctuations during rotation due to the combined effect of hydrostatic pressure and hydrodynamic pressure. Under different water heads, obvious flow turbulence and high turbulent kinetic energy areas are observed in the runner and draft tube due to the influence of the shape of the blade wake vortex. The vibration in the tubular turbine is mainly concentrated in the runner and draft tube and influenced by the water gravity and the runner structure of the transverse cantilever beam. The amplitude of pressure fluctuation is the largest when the frequency inside the runner is the blade passing frequency at each water head, so the maximum vibration position is located at the runner. The research results serve as a guide for the design and operation of the horizontal tubular turbine.

 Artículos similares

       
 
Jiaming Xiong, Song Sang, Xiao Shi and Chaojie Gan    
This study investigates the vertical-type submerged floating tunnel with anchor cables. Based on the characteristics of the anchor cables, the anchor cables are simplified as a nonlinear beam model with hinged ends. Disregarding the axial displacement of... ver más

 
Gaoan Zheng, Pu Xu, Lin Li and Xinghua Fan    
The pipeline system is widely used in marine engineering, and the formation mechanism and flow patterns of two-phase slug flows are of great significance for the optimal design of and vibration prevention in a complex pipeline system. Aiming at the above... ver más

 
Ying-Qing Guo, Meng Li, Yang Yang, Zhao-Dong Xu and Wen-Han Xie    
As a typical intelligent device, magnetorheological (MR) dampers have been widely applied in vibration control and mitigation. However, the inherent hysteresis characteristics of magnetic materials can cause significant time delays and fluctuations, affe... ver más
Revista: Information

 
Sheng Zhang, Yuguang Bai, Youwei Zhang and Dan Zhao    
Hypersonic vehicles or engines usually employ complex thermal protecting shells. This sometimes brings multi-physics difficulties, e.g., thermal-aeroelastic problems like panel flutter etc. This paper aims to propose a novel optimization method versus th... ver más
Revista: Aerospace

 
Kichan Sim and Kangsu Lee    
A digital twin is a virtual model of a real-world structure (such as a device or equipment) which supports various problems or operations that occur throughout the life cycle of the structure through linkage with the actual structure. Digital twins have ... ver más