ARTÍCULO
TITULO

Assessment of a Dynamic Physically Based Slope Stability Model to Evaluate Timing and Distribution of Rainfall-Induced Shallow Landslides

Juby Thomas    
Manika Gupta    
Prashant K. Srivastava and George P. Petropoulos    

Resumen

Shallow landslides due to hydro-meteorological factors are one of the most common destructive geological processes, which have become more frequent in recent years due to changes in rainfall frequency and intensity. The present study assessed a dynamic, physically based slope stability model, Transient Rainfall Infiltration and Grid-Based Slope Stability Model (TRIGRS), in Idukki district, Kerala, Western Ghats. The study compared the impact of hydrogeomechanical parameters derived from two different data sets, FAO soil texture and regionally available soil texture, on the simulation of the distribution and timing of shallow landslides. For assessing the landslide distribution, 1913 landslides were compared and true positive rates (TPRs) of 68% and 60% were obtained with a nine-day rainfall period for the FAO- and regional-based data sets, respectively. However, a false positive rate (FPR) of 36% and 31% was also seen, respectively. The timing of occurrence of nine landslide events was assessed, which were triggered in the second week of June 2018. Even though the distribution of eight landslides was accurately simulated, the timing of only three events was found to be accurate. The study concludes that the model simulations using parameters derived from either of the soil texture data sets are able to identify the location of the event. However, there is a need for including a high-spatial-resolution hydrogeomechanical parameter data set to improve the timing of landslide event modeling.

 Artículos similares

       
 
Qingteng Yuan, Ming Xiao, Ci Kong and Kaicheng Wang    
The foundation of a seismic safety assessment of cross-fault hydraulic tunnels is an acceptable and accurate seismic response. A dynamic contact force algorithm that may take into consideration the interaction between the fault?surrounding rock?lining st... ver más
Revista: Buildings

 
Faris Tre?njo, Mustafa Humo, Filippo Casarin and Naida Ademovic    
Minarets, tall structures, connected or not to the mosque attract attention due to their specific architectural features. Vulnerability to seismic damage has been witnessed throughout history on tall and slender structures after earthquake ground motions... ver más
Revista: Buildings

 
Juan Patricio Chicaiza-Fuentes and Ana Gabriela Haro-Baez    
This study presents the performance-based seismic assessment of low-rise reinforced concrete archetype buildings, considering repair costs for ordinary moment-resistant frames (OMF) and dual systems consisting of OMF plus special shear walls (SSW). Histo... ver más
Revista: Buildings

 
Weijie Huang, Yuanmin Yang, Rui Pang and Mingyuan Jing    
Studying the impact of mainshock?aftershock sequences on dam reliability is crucial for effective disaster prevention measures. With this purpose in mind, a new method for stochastic dynamic response analyses and reliability assessments of dams during se... ver más
Revista: Water

 
Ru Li, Siyi Huang and Hongqiang Dou    
Large-scale photovoltaic power plants located in highland mountainous areas are vulnerable to landslides due to extreme rainfall, posing a significant threat to the normal operation of photovoltaic power plants. However, limited research has been conduct... ver más
Revista: Water