ARTÍCULO
TITULO

Ship Detection under Low-Visibility Weather Interference via an Ensemble Generative Adversarial Network

Xinqiang Chen    
Chenxin Wei    
Zhengang Xin    
Jiansen Zhao and Jiangfeng Xian    

Resumen

Maritime ship detection plays a crucial role in smart ships and intelligent transportation systems. However, adverse maritime weather conditions, such as rain streak and fog, can significantly impair the performance of visual systems for maritime traffic. These factors constrain the performance of traffic monitoring systems and ship-detection algorithms for autonomous ship navigation, affecting maritime safety. The paper proposes an approach to resolve the problem by visually removing rain streaks and fog from images, achieving an integrated framework for accurate ship detection. Firstly, the paper employs an attention generation network within an adversarial neural network to focus on the distorted regions of the degraded images. The paper also utilizes a contextual encoder to infer contextual information within the distorted regions, enhancing the credibility of image restoration. Secondly, a weighted bidirectional feature pyramid network (BiFPN) is introduced to achieve rapid multi-scale feature fusion, enhancing the accuracy of maritime ship detection. The proposed GYB framework was validated using the SeaShip dataset. The experimental results show that the proposed framework achieves an average accuracy of 96.3%, a recall of 95.35%, and a harmonic mean of 95.85% in detecting maritime traffic ships under rain-streak and foggy-weather conditions. Moreover, the framework outperforms state-of-the-art ship detection methods in such challenging weather scenarios.

 Artículos similares

       
 
Chi-Hieu Ngo, Seok-Ju Lee, Changhyun Kim, Minh-Chau Dinh and Minwon Park    
In seaports, the automatic Grab-Type Ship Unloader (GTSU) stands out for its ability to automatically load and unload materials, offering the potential for substantial productivity improvement and cost reduction. Developing a fully automatic GTSU, howeve... ver más

 
Jia-Ling Xie, Wei-Feng Shi, Ting Xue and Yu-Hang Liu    
The fault detection and diagnosis of a ship?s electric propulsion system is of great significance to the reliability and safety of large modern ships. The traditional fault diagnosis method based on mathematical models and expert knowledge is limited by ... ver más

 
Gang Wang, Jingheng Wang, Xiaoyuan Wang, Quanzheng Wang, Junyan Han, Longfei Chen and Kai Feng    
Global route planning has garnered global scholarly attention as a crucial technology for ensuring the safe navigation of intelligent ships. The comprehensive influence of time-varying factors such as water depth, prohibited areas, navigational tracks, a... ver más

 
Baris Yigin and Metin Celik    
In recent years, advanced methods and smart solutions have been investigated for the safe, secure, and environmentally friendly operation of ships. Since data acquisition capabilities have improved, data processing has become of great importance for ship... ver más

 
Xiaodong Cui, Zhuofan He, Yangtao Xue, Keke Tang, Peican Zhu and Jing Han    
Underwater Acoustic Target Recognition (UATR) plays a crucial role in underwater detection devices. However, due to the difficulty and high cost of collecting data in the underwater environment, UATR still faces the problem of small datasets. Few-shot le... ver más