Inicio  /  Applied System Innovation  /  Vol: 6 Par: 1 (2023)  /  Artículo
ARTÍCULO
TITULO

A Novel Hybrid Simulated Annealing for No-Wait Open-Shop Surgical Case Scheduling Problems

Amin Rahimi    
Seyed Mojtaba Hejazi    
Mostafa Zandieh and Mirpouya Mirmozaffari    

Resumen

In this paper, the problem of finding an assignment of ?n? surgeries to be presented in one of ?m? identical operating rooms (ORs) or machines as the surgical case scheduling problem (SCSP) is proposed. Since ORs are among NP-hard optimization problems, mathematical and metaheuristic methods to address OR optimization problems are used. The job or surgical operation ordering in any OR is a permanent part of all sequencing and scheduling problems. The transportation times between ORs are defined based on the type of surgical operations and do not depend on distance, so there is no surgical operation waiting time for transferring. These problems are called no-wait open-shop scheduling problems (NWOSP) with transportation times. The transportation system for the problems is considered a multi-transportation system with no limitation on the number of transportation devices. Accordingly, this study modeled a novel combined no-wait open-shop surgical case scheduling problem (NWOSP-SCSP) with multi-transportation times for the first time to minimize the maximum percentile of makespan for OR as a single objective model. A mixed-integer linear program (MILP) with small-sized instances is solved. In addition to the small-sized model, a novel metaheuristic based on a hybrid simulated annealing (SA) algorithm to solve large-sized problems in an acceptable computational time is suggested, considering the comparison of the SA algorithm and a new recommended heuristic algorithm. Then, the proposed hybrid SA and SA algorithms are compared based on their performance measurement. After reaching the results with a numerical analysis in Nova Scotia health authority hospitals and health centers, the hybrid SA algorithm has generated significantly higher performance than the SA algorithm.

 Artículos similares

       
 
Jing Luo, Yuhang Zhang, Jiayuan Zhuang and Yumin Su    
The development of intelligent task allocation and path planning algorithms for unmanned surface vehicles (USVs) is gaining significant interest, particularly in supporting complex ocean operations. This paper proposes an intelligent hybrid algorithm tha... ver más

 
Filippo Orazi, Simone Gasperini, Stefano Lodi and Claudio Sartori    
Quantum computing has rapidly gained prominence for its unprecedented computational efficiency in solving specific problems when compared to classical computing counterparts. This surge in attention is particularly pronounced in the realm of quantum mach... ver más
Revista: Information

 
Hang Li, Shengjie Zhao and Hao Deng    
The extraction of community-scale green infrastructure (CSGI) poses challenges due to limited training data and the diverse scales of the targets. In this paper, we reannotate a training dataset of CSGI and propose a three-stage transfer learning method ... ver más
Revista: Information

 
Abdelghani Azri, Adil Haddi and Hakim Allali    
Collaborative filtering (CF), a fundamental technique in personalized Recommender Systems, operates by leveraging user?item preference interactions. Matrix factorization remains one of the most prevalent CF-based methods. However, recent advancements in ... ver más
Revista: Information

 
Luís P. N. Mendes, Ana M. C. Ricardo, Alexandre J. M. Bernardino and Rui M. L. Ferreira    
We present novel velocimetry algorithms based on the hybridization of correlation-based Particle Image Velocimetry (PIV) and a combination of Lucas?Kanade and Liu?Shen optical flow (OpF) methods. An efficient Aparapi/OpenCL implementation of those method... ver más
Revista: Water