Inicio  /  Future Internet  /  Vol: 16 Par: 3 (2024)  /  Artículo
ARTÍCULO
TITULO

Multi-Level Split Federated Learning for Large-Scale AIoT System Based on Smart Cities

Hanyue Xu    
Kah Phooi Seng    
Jeremy Smith and Li Minn Ang    

Resumen

In the context of smart cities, the integration of artificial intelligence (AI) and the Internet of Things (IoT) has led to the proliferation of AIoT systems, which handle vast amounts of data to enhance urban infrastructure and services. However, the collaborative training of deep learning models within these systems encounters significant challenges, chiefly due to data privacy concerns and dealing with communication latency from large-scale IoT devices. To address these issues, multi-level split federated learning (multi-level SFL) has been proposed, merging the benefits of split learning (SL) and federated learning (FL). This framework introduces a novel multi-level aggregation architecture that reduces communication delays, enhances scalability, and addresses system and statistical heterogeneity inherent in large AIoT systems with non-IID data distributions. The architecture leverages the Message Queuing Telemetry Transport (MQTT) protocol to cluster IoT devices geographically and employs edge and fog computing layers for initial model parameter aggregation. Simulation experiments validate that the multi-level SFL outperforms traditional SFL by improving model accuracy and convergence speed in large-scale, non-IID environments. This paper delineates the proposed architecture, its workflow, and its advantages in enhancing the robustness and scalability of AIoT systems in smart cities while preserving data privacy.

 Artículos similares

       
 
Boris Stanoev, Goran Mitrov, Andrea Kulakov, Georgina Mirceva, Petre Lameski and Eftim Zdravevski    
With the exponential growth of data, extracting actionable insights becomes resource-intensive. In many organizations, normalized relational databases store a significant portion of this data, where tables are interconnected through some relations. This ... ver más

 
Yee Sye Lee, Ali Rashidi, Amin Talei and Daniel Kong    
In recent years, mixed reality (MR) technology has gained popularity in construction management due to its real-time visualisation capability to facilitate on-site decision-making tasks. The semantic segmentation of building components provides an attrac... ver más
Revista: Buildings

 
Futo Ueda, Hiroto Tanouchi, Nobuyuki Egusa and Takuya Yoshihiro    
River water-level prediction is crucial for mitigating flood damage caused by torrential rainfall. In this paper, we attempt to predict river water levels using a deep learning model based on radar rainfall data instead of data from upstream hydrological... ver más
Revista: Water

 
Juan Ma, Qiang Yang, Mingzhi Zhang, Yao Chen, Wenyi Zhao, Chengyu Ouyang and Dongping Ming    
Accurately predicting landslide deformation based on monitoring data is key to successful early warning of landslide disasters. Landslide displacement?time curves offer an intuitive reflection of the landslide motion process and deformation predictions o... ver más
Revista: Water

 
Min Ma, Shanrong Liu, Shufei Wang and Shengnan Shi    
Automatic modulation classification (AMC) plays a crucial role in wireless communication by identifying the modulation scheme of received signals, bridging signal reception and demodulation. Its main challenge lies in performing accurate signal processin... ver más
Revista: Future Internet