Inicio  /  Applied Sciences  /  Vol: 13 Par: 12 (2023)  /  Artículo
ARTÍCULO
TITULO

Enhancing Feature Selection for Imbalanced Alzheimer?s Disease Brain MRI Images by Random Forest

Xibin Wang    
Qiong Zhou    
Hui Li and Mei Chen    

Resumen

Imbalanced learning problems often occur in application scenarios and are additionally an important research direction in the field of machine learning. Traditional classifiers are substantially less effective for datasets with an imbalanced distribution, especially for high-dimensional longitudinal data structures. In the medical field, the imbalance of data problem is more common, and correctly identifying samples of the minority class can obtain important information. Moreover, class imbalance in imbalanced AD (Alzheimer?s disease) data presents a significant challenge for machine learning algorithms that assume the data are evenly distributed within the classes. In this paper, we propose a random forest-based feature selection algorithm for imbalanced neuroimaging data classification. The algorithm employs random forest to evaluate the value of each feature and combines the correlation matrix to choose the optimal feature subset, which is applied to imbalanced MRI (magnetic resonance imaging) AD data to identify AD, MCI (mild cognitive impairment), and NC (normal individuals). In addition, we extract multiple features from AD images that can represent 2D and 3D brain information. The effectiveness of the proposed method is verified by the experimental evaluation using the public ADNI (Alzheimer?s neuroimaging initiative) dataset, and results demonstrate that the proposed method has a higher prediction accuracy and AUC (area under the receiver operating characteristic curve) value in NC-AD, MCI-AD, and NC-MCI group data, with the highest accuracy and AUC value for the NC-AD group data.

 Artículos similares

       
 
Xiaoqin Xue, Chao Ren, Anchao Yin, Ying Zhou, Yuanyuan Liu, Cong Ding and Jiakai Lu    
In the domain of remote sensing research, the extraction of roads from high-resolution imagery remains a formidable challenge. In this paper, we introduce an advanced architecture called PCCAU-Net, which integrates Pyramid Pathway Input, CoordConv convol... ver más
Revista: Applied Sciences

 
Zhenyu Yin, Feiqing Zhang, Guangyuan Xu, Guangjie Han and Yuanguo Bi    
Confronting the challenge of identifying unknown fault types in rolling bearing fault diagnosis, this study introduces a multi-scale bearing fault diagnosis method based on transfer learning. Initially, a multi-scale feature extraction network, MBDCNet, ... ver más
Revista: Applied Sciences

 
Hao Gu, Ming Chen and Dongmei Gan    
The identification of gender in Chinese mitten crab juveniles is a critical prerequisite for the automatic classification of these crab juveniles. Aiming at the problem that crab juveniles are of different sizes and relatively small, with unclear male an... ver más
Revista: Applied Sciences

 
Yahya Ali Fageehi and Abdulnaser M. Alshoaibi    
The primary focus of this paper is to investigate the application of ANSYS Workbench 19.2 software?s advanced feature, known as Separating Morphing and Adaptive Remeshing Technology (SMART), in simulating the growth of cracks within structures that incor... ver más
Revista: Applied Sciences

 
Woonghee Lee, Mingeon Ju, Yura Sim, Young Kul Jung, Tae Hyung Kim and Younghoon Kim    
Deep learning-based segmentation models have made a profound impact on medical procedures, with U-Net based computed tomography (CT) segmentation models exhibiting remarkable performance. Yet, even with these advances, these models are found to be vulner... ver más
Revista: Applied Sciences