ARTÍCULO
TITULO

Finite Element and Neural Network Based Predictive Model to Determine Natural Frequency of Laminated Composite Plates with Eccentric Cutouts under Free Vibration

Mohamed Rida Seba    
Said Kebdani    

Resumen

This research proposes a predictive model to identify changes in the mechanical and geometrical properties of composite plates with eccentric cutouts based on natural frequency. Finite elements (FE) and neural networks are used to develop the model based on machine learning. First, the numerical analysis of free vibration is performed by the FE model on the laminated composite plates with a stacking sequence [0/90]2s under a clamped-free (CFFF) boundary condition. The outputs of the FE model (520 configurations) are then utilized to train the artificial neural network (ANN) model through the Levenberg-Marquardt method, and the developed ANN model is then used to evaluate the influence of various parameters on the natural frequency. The results show that the changes in the mechanical and geometrical properties of composite plates have impacts on the natural frequency. Furthermore, the findings of the ANN model are substantially identical to those of the numerical model, with a small margin of error.

 Artículos similares

       
 
Weihan Huang, Ke Gao and Yu Feng    
Predicting earthquakes through reasonable methods can significantly reduce the damage caused by secondary disasters such as tsunamis. Recently, machine learning (ML) approaches have been employed to predict laboratory earthquakes using stick-slip dynamic... ver más

 
Guoliang Sun, Tingting Guo, Bao Yuan, Xiaojing Yang and Guang Wang    
The sample environment is essential to neutron scattering experiments as it induces the sample under study into a phase or state of particular interest. Various sample environments have been developed, yet the high-voltage electric field has rarely been ... ver más
Revista: Instruments

 
Cesare Patuelli, Enrico Cestino and Giacomo Frulla    
Vibration analysis of wing-box structures is a crucial aspect of the aeronautic design to avoid aeroelastic effects during normal flight operations. The deformation of a wing structure can induce nonlinear couplings, causing a different dynamic behavior ... ver más
Revista: Aerospace

 
Xingxing Huang, Kang Han, Zhenyu Lu, Shuncheng Zhang and Liang Guo    
In order to reduce the influence of temperature deformation of large-size body-mounted radiators on the observation accuracy of space station telescopes and adapt to launch vibration loads, this paper proposes a floating combination stress release mechan... ver más
Revista: Aerospace

 
George Tzoumakis, Konstantinos Fotopoulos and George Lampeas    
Future liquid hydrogen-powered aircraft requires the design and optimization of a large number of systems and subsystems, with cryogenic tanks being one of the largest and most critical. Considering previous space applications, these tanks are usually st... ver más
Revista: Aerospace