Inicio  /  Aerospace  /  Vol: 9 Par: 2 (2022)  /  Artículo
ARTÍCULO
TITULO

Neural Network Prediction for Ice Shapes on Airfoils Using iceFoam Simulations

Sergei Strijhak    
Daniil Ryazanov    
Konstantin Koshelev and Aleksandr Ivanov    

Resumen

In this article the procedure and method for the ice accretion prediction for different airfoils using artificial neural networks (ANNs) are discussed. A dataset for the neural network is based on the numerical experiment results?obtained through iceFoam solver?with four airfoils (NACA0012, General Aviation, Business Jet, and Commercial Transport). Input data for neural networks include airfoil and ice geometries, transformed into a set of parameters using a parabolic coordinate system and Fourier series expansion. Besides input features include physical parameters of flow (velocity, temperature, droplets diameter, liquid water content, time of ice accretion) and angle of attack. The novelty of this work is in that the neural network dataset includes various airfoils and the data augmentation technique being a combination of all time slices. Several artificial neural networks (ANNs), fully connected networks (FCNNs), and convolutional networks (CNNs) were trained to predict airfoil ice shapes. Two different loss functions were considered. In order to improve performance of models, batch normalization and dropout layers were used. The most accurate results of ice shape prediction were obtained using CNN and FCNN that applied batch normalization and dropout layers to output neurons of each layer.

 Artículos similares

       
 
Huihui Zhu, Hexiang Lin, Shaojun Wu, Wei Luo, Hui Zhang, Yuancheng Zhan, Xiaoting Wang, Aiqun Liu and Leong Chuan Kwek    
Integrated photonic chips leverage the recent developments in integrated circuit technology, along with the control and manipulation of light signals, to realize the integration of multiple optical components onto a single chip. By exploiting the power o... ver más
Revista: Information

 
Weilong Guang, Peng Wang, Jinshuai Zhang, Linjuan Yuan, Yue Wang, Guang Feng and Ran Tao    
Predicting the flow situation of cavitation owing to its high-dimensional nonlinearity has posed great challenges. To address these challenges, this study presents a novel reduced order modeling (ROM) method to accurately analyze and predict cavitation f... ver más

 
Diya Wang, Yonglin Zhang, Lixin Wu, Yupeng Tai, Haibin Wang, Jun Wang, Fabrice Meriaudeau and Fan Yang    
In recent years, the study of deep learning techniques for underwater acoustic channel estimation has gained widespread attention. However, existing neural network channel estimation methods often overfit to training dataset noise levels, leading to dimi... ver más

 
Sadiq Gbagba, Lorenzo Maccioni and Franco Concli    
In the shipbuilding, construction, automotive, and aerospace industries, welding is still a crucial manufacturing process because it can be utilized to create massive, intricate structures with exact dimensional specifications. These kinds of structures ... ver más
Revista: Applied Sciences

 
Han Zhang, Yadong Wu, Weihan Zhang and Yuling Zhang    
The precise ascertainment of stellar ages is pivotal for astrophysical research into stellar characteristics and galactic dynamics. To address the prevalent challenges of suboptimal accuracy in stellar age determination and limited proficiency in apprehe... ver más
Revista: Applied Sciences