Inicio  /  Aerospace  /  Vol: 10 Par: 3 (2023)  /  Artículo
ARTÍCULO
TITULO

Framework Development for Efficient Mission-Oriented Satellite System-Level Design

Kybeom Kwon    
Seunghyun Min    
Jongbum Kim and Kwangwon Lee    

Resumen

The space mission analysis and design process defines a space system at the system level to accomplish space mission objectives. Although the traditional process is well established and comprehensive through several years of experience, we propose a novel design process framework in this paper to aid the traditional process focusing on the following areas of improvement: (1) clarification of the direct connection between mission objectives and final system-level baseline design and requirements, (2) development of a comprehensive quantitative judgment criterion to evaluate various design alternatives, (3) derivation of system drivers and critical requirements after obtaining sufficient design knowledge based on the analysis of big data obtained from exploration of entire design space using an integrated design environment, and (4) system optimization even at the system level with a holistic perspective to guarantee that the baseline design meets the mission objectives. Examples of design steps in the proposed framework are characterizing stakeholder needs and engineering characteristics, building an integrated design environment, exploring and analyzing design space, optimizing system-level design, and elaborating mission utility to ensure an efficient mission-oriented design approach. The proposed framework is implemented in an example space mission involving quantum cryptographic communication. Accordingly, we demonstrate that the proposed framework provides an efficient mission-oriented satellite system-level baseline design.

 Artículos similares

       
 
Mihai Crengani?, Radu-Eugen Breaz, Sever-Gabriel Racz, Claudia-Emilia Gîrjob, Cristina-Maria Biri?, Adrian Maro?an and Alexandru Bârsan    
This scientific paper presents the development and validation process of a dynamic model in Simulink used for decision-making regarding the locomotion and driving type of autonomous omnidirectional mobile platforms. Unlike traditional approaches relying ... ver más
Revista: Applied Sciences

 
Abdelghani Azri, Adil Haddi and Hakim Allali    
Collaborative filtering (CF), a fundamental technique in personalized Recommender Systems, operates by leveraging user?item preference interactions. Matrix factorization remains one of the most prevalent CF-based methods. However, recent advancements in ... ver más
Revista: Information

 
Guillermo Calahorra-Candao and María José Martín-de Hoyos    
This study develops a theoretical framework integrating the Technology Acceptance Model (TAM) and Uses and Gratifications Theory (UGT) to predict and understand the acceptance of voice shopping intentions, particularly through AI-driven voice assistants.... ver más
Revista: Information

 
Martin Wynn and Christian Weber    
The development and implementation of information systems strategy in multi-national corporations (MNCs) faces particular challenges?cultural differences and variations in work values and practices across different countries, numerous technology landscap... ver más
Revista: Information

 
George Westergaard, Utku Erden, Omar Abdallah Mateo, Sullaiman Musah Lampo, Tahir Cetin Akinci and Oguzhan Topsakal    
Automated Machine Learning (AutoML) tools are revolutionizing the field of machine learning by significantly reducing the need for deep computer science expertise. Designed to make ML more accessible, they enable users to build high-performing models wit... ver más
Revista: Information