Inicio  /  Aerospace  /  Vol: 9 Par: 10 (2022)  /  Artículo
ARTÍCULO
TITULO

Threat-Oriented Collaborative Path Planning of Unmanned Reconnaissance Mission for the Target Group

Qihong Chen    
Qingsong Zhao and Zhigang Zou    

Resumen

Unmanned aerial vehicle (UAV) cluster combat is a typical example of an intelligent cluster application, and it is characterized by its large scale, low cost, retrievability, and intra-cluster autonomous coordination. An unmanned reconnaissance mission for a target group (URMFTG) is a significant pattern in UAV cluster combat. This paper discusses the collaborative path planning problem of unmanned aerial vehicle formations (UAVFs) and refueling tankers in a URMFTG with threat areas and fuel constraints. The purpose of collaborative path planning is to ensure that the UAVFs (with fuel constraints) can complete the reconnaissance mission for the target group with the assistance of refueling tankers, which is one of the most important constraints in the collaborative path planning. In this paper, a collaborative path-planning model is designed to analyze the relationship between the planning path of the UAVFs and the tankers, and a threat avoidance strategy is designed considering the threat area. This paper proposes a two-stage solution algorithm. It creates a UAVFs path-planning algorithm based on the fast search genetic algorithm (FSGA) and a refueling tanker path-planning algorithm based on the improved non-dominated sorting genetic algorithm II (NSGA-II). Based on simulation experiments, the solution method proposed in this paper can provide a better path-planning scheme for a URMFTG. That is, it decreases the rate of the UAVF?s distance growth from 3.1% to 2.2% for the path planning of UAVFs and provides a better Pareto solution set for the path planning of refueling tankers.

 Artículos similares

       
 
Saurabh Chatterjee and Kaadaapuram Kurien Issac    
The specific application of this work is in the robotic path planning of camera-based non-destructive testing systems such as active thermography.
Revista: Applied Sciences

 
Chuanwei Zhang, Xinyue Yang, Rui Zhou and Zhongyu Guo    
In order to solve the problem of low safety and efficiency of underground mine vehicles, a path planning method for underground mine vehicles based on an improved A star (A*) and fuzzy control Dynamic Window Approach (DWA) is proposed. Firstly, the envir... ver más
Revista: Applied Sciences

 
Yi Zhang, Hengchao Zhao, Zheng Zhang and Hongbo Wang    
Addressing the automatic berthing task for vessels, this study introduces the Flow Matching Double Section Bezier Berth Method (FM-DSB) for handling downstream and upstream berthing instructions. By considering the orientation relationship between the di... ver más

 
Shitu Chen, Ling Feng, Xuteng Bao, Zhe Jiang, Bowen Xing and Jingxiang Xu    
Path planning is crucial for unmanned surface vehicles (USVs) to navigate and avoid obstacles efficiently. This study evaluates and contrasts various USV path-planning algorithms, focusing on their effectiveness in dynamic obstacle avoidance, resistance ... ver más

 
Chaopeng Yang, Jiacai Pan, Kai Wei, Mengjie Lu and Shihao Jia    
Ocean currents make it difficult for unmanned surface vehicles (USVs) to keep a safe distance from obstacles. Effective path planning should adequately consider the effect of ocean currents on USVs. This paper proposes an improved A* algorithm based on a... ver más