Inicio  /  Aerospace  /  Vol: 7 Par: 6 (2020)  /  Artículo
ARTÍCULO
TITULO

Critical Parameter Identification for Safety Events in Commercial Aviation Using Machine Learning

HyunKi Lee    
Sasha Madar    
Santusht Sairam    
Tejas G. Puranik    
Alexia P. Payan    
Michelle Kirby    
Olivia J. Pinon and Dimitri N. Mavris    

Resumen

In recent years, there has been a rapid growth in the application of data science techniques that leverage aviation data collected from commercial airline operations to improve safety. This paper presents the application of machine learning to improve the understanding of risk factors during flight and their causal chains. With increasing complexity and volume of operations, rapid accumulation and analysis of this safety-related data has the potential to maintain and even lower the low global accident rates in aviation. This paper presents the development of an analytical methodology called Safety Analysis of Flight Events (SAFE) that synthesizes data cleaning, correlation analysis, classification-based supervised learning, and data visualization schema to streamline the isolation of critical parameters and the elimination of tangential factors for safety events in aviation. The SAFE methodology outlines a robust and repeatable framework that is applicable across heterogeneous data sets containing multiple aircraft, airport of operations, and phases of flight. It is demonstrated on Flight Operations Quality Assurance (FOQA) data from a commercial airline through use cases related to three safety events, namely Tire Speed Event, Roll Event, and Landing Distance Event. The application of the SAFE methodology yields a ranked list of critical parameters in line with subject-matter expert conceptions of these events for all three use cases. The work concludes by raising important issues about the compatibility levels of machine learning and human conceptualization of incidents and their precursors, and provides initial guidance for their reconciliation.

 Artículos similares

       
 
Jiahao Chen, Jiaxin Li, Deqian Zheng, Qianru Zheng, Jiayi Zhang, Meimei Wu and Chaosai Liu    
The multi-field coupling of grain piles in grain silos is a focal point of research in the field of grain storage. The porosity of grain piles is a critical parameter that affects the heat and moisture transfer in grain piles. To investigate the distribu... ver más
Revista: Applied Sciences

 
Darian M. Onchis, Flavia Costi, Codruta Istin, Ciprian Cosmin Secasan and Gabriel V. Cozma    
(1) Background: Lung cancers are the most common cancers worldwide, and prostate cancers are among the second in terms of the frequency of cancers diagnosed in men. Automatic ranking of the risk groups of such diseases is highly in demand, but the clinic... ver más
Revista: Applied Sciences

 
Christopher Jun Qian Teh, Micheal Drieberg, Khairul Nisak Md Hasan, Abdul Latif Shah and Rizwan Ahmad    
The use of photovoltaic (PV) panels in interior spaces is expected to increase due to the proliferation of low-power sensor devices in the IoT domain. PV models are critical for estimating the I?V curves that define their performance at various light int... ver más
Revista: Applied Sciences

 
Ruoyang Li, Shuping Xiong, Yinchao Che, Lei Shi, Xinming Ma and Lei Xi    
Semantic segmentation algorithms leveraging deep convolutional neural networks often encounter challenges due to their extensive parameters, high computational complexity, and slow execution. To address these issues, we introduce a semantic segmentation ... ver más
Revista: Algorithms

 
Hao Chai, Xi?an Li, Biao Qin, Weiping Wang and Mani Axel    
The volumetric change in unsaturated loess during loading causes serious damage to the foundation and structure, accompanied by changes in hydraulic conditions. Therefore, quantifying the change in the load effect of loess under hydraulic coupling is of ... ver más
Revista: Water