Inicio  /  Aerospace  /  Vol: 11 Par: 4 (2024)  /  Artículo
ARTÍCULO
TITULO

Wind Tunnel Investigation of Transient Propeller Loads for Non-Axial Inflow Conditions

Catharina Moreira    
Nikolai Herzog and Christian Breitsamter    

Resumen

Recent developments in electrical Vertical Take-off and Landing (eVTOL) vehicles show the need for a better understanding of transient aero-mechanical propeller loads for non-axial inflow conditions. The variety of vehicle configurations conceptualized with different propellers in terms of blade geometry, number of blades, and their general integration concept results in aerodynamic loads on the propellers which are different from those on conventional fixed-wing aircraft propellers or helicopter rotors. Such varying aerodynamic loads have to be considered in the vehicle design as a whole and also in the detailed design of their respective electric propulsion systems. Therefore, an experimental approach is conducted on two different propeller blade geometries and a varying number of blades with the objective to explore the characteristics at non-axial inflow conditions. Experimental data are compared with calculated results of a low-fidelity Blade Element Momentum Theory (BEMT) approach. Average thrust and side force coefficients are shown to increase with inflow angle, and this trend is captured by the implemented numerical method. Measured thrust and in-plane forces are shown to oscillate at the blade passing frequency and its harmonics, with higher amplitudes at higher angles of inflow or lower number of blades.

 Artículos similares

       
 
Yoichi Suenaga and Kojiro Suzuki    
This study examines the wing hinge oscillations in an aircraft concept that employs multiple wings, or small aircraft, chained at the wing tips through freely rotatable hinges with minimal structural damping and no mechanical position-locking system. Thi... ver más
Revista: Aerospace

 
María Elena Tejeda-del-Cueto, Manuel Alberto Flores-Alfaro, Miguel Toledo-Velázquez, Lorena del Carmen Santos-Cortes, José Hernández-Hernández and Marco Osvaldo Vigueras-Zúñiga    
The objective of this study is to develop a genetic algorithm that uses the IGP parameterization to increase the lift coefficient (CL) of three airfoils to be used on wings of unmanned aerial vehicles (UAVs). The geometry of three baseline airfoils was m... ver más
Revista: Aerospace

 
Zhenlong Wu, Tianyu Zhang, Yuan Gao and Huijun Tan    
In this paper, a novel small-scale gust generator research facility was designed and examined for generating Sears-type gusts. The design scheme, integration with the wind tunnel, experiment and validation of its capability are presented in detail. To he... ver más
Revista: Aerospace

 
Daniele Granata, Alberto Savino and Alex Zanotti    
The present study aimed to investigate the capability of mid-fidelity aerodynamic solvers in performing a preliminary evaluation of the static and dynamic stability derivatives of aircraft configurations in their design phase. In this work, the mid-fidel... ver más
Revista: Aerospace

 
Yong Wang, Kongcheng Zuo, Peng Guo, Kun Zhao and Victor Feliksovich Kopiev    
Reducing the tonal noise from airfoil instabilities has attracted significant interest from the aeronautical community in the past few years. The aim of this paper is to investigate the effect of structured porous trailing edges on the tonal noise reduct... ver más
Revista: Applied Sciences